File size: 14,761 Bytes
4bfb360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""A GPU worker class."""
import gc
import os
from typing import Any, Dict, List, Optional, Set, Tuple

import torch
import torch.distributed

from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
                         ModelConfig, ParallelConfig, SchedulerConfig,
                         VisionLanguageConfig)
from vllm.distributed import (broadcast_tensor_dict,
                              ensure_model_parallel_initialized,
                              init_distributed_environment)
from vllm.distributed.device_communicators import pynccl_utils
from vllm.distributed.device_communicators.custom_all_reduce import (
    init_custom_ar)
from vllm.lora.request import LoRARequest
from vllm.model_executor import set_random_seed
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
from vllm.worker.cache_engine import CacheEngine
# from vllm.worker.model_runner import ModelRunner
from vllm.worker.worker_base import WorkerBase
from serve.model_runner import ModelRunner


class Worker(WorkerBase):
    """A worker class that executes (a partition of) the model on a GPU.

    Each worker is associated with a single GPU. The worker is responsible for
    maintaining the KV cache and executing the model on the GPU. In case of
    distributed inference, each worker is assigned a partition of the model.
    """

    def __init__(
        self,
        model_config: ModelConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        device_config: DeviceConfig,
        cache_config: CacheConfig,
        load_config: LoadConfig,
        local_rank: int,
        rank: int,
        distributed_init_method: str,
        lora_config: Optional[LoRAConfig] = None,
        vision_language_config: Optional[VisionLanguageConfig] = None,
        is_driver_worker: bool = False,
    ) -> None:
        self.model_config = model_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.device_config = device_config
        self.cache_config = cache_config
        self.local_rank = local_rank
        self.rank = rank
        self.distributed_init_method = distributed_init_method
        self.lora_config = lora_config
        self.load_config = load_config
        self.is_driver_worker = is_driver_worker
        if self.is_driver_worker:
            assert self.rank == 0, "The driver worker must have rank 0."

        if self.model_config.trust_remote_code:
            # note: lazy import to avoid importing torch before initializing
            from vllm.utils import init_cached_hf_modules
            init_cached_hf_modules()
        self.vision_language_config = vision_language_config
        if self.vision_language_config:
            assert not self.lora_config, (
                "To be tested: vision language model with LoRA settings.")

        self.model_runner = ModelRunner(
            model_config,
            parallel_config,
            scheduler_config,
            device_config,
            load_config=load_config,
            lora_config=self.lora_config,
            kv_cache_dtype=self.cache_config.cache_dtype,
            is_driver_worker=is_driver_worker,
            vision_language_config=vision_language_config,
        )
        # Uninitialized cache engine. Will be initialized by
        # initialize_cache.
        self.cache_engine: CacheEngine
        self.gpu_cache: List[torch.Tensor]

    def init_device(self) -> None:
        if self.device_config.device.type == "cuda":
            # torch.distributed.all_reduce does not free the input tensor until
            # the synchronization point. This causes the memory usage to grow
            # as the number of all_reduce calls increases. This env var disables
            # this behavior.
            # Related issue:
            # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
            os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"

            # This env var set by Ray causes exceptions with graph building.
            os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
            self.device = torch.device(f"cuda:{self.local_rank}")
            torch.cuda.set_device(self.device)

            _check_if_gpu_supports_dtype(self.model_config.dtype)
            torch.cuda.empty_cache()
            self.init_gpu_memory = torch.cuda.mem_get_info()[0]
        else:
            raise RuntimeError(
                f"Not support device type: {self.device_config.device}")
        # Initialize the distributed environment.
        init_worker_distributed_environment(self.parallel_config, self.rank,
                                            self.distributed_init_method,
                                            self.local_rank)
        # Set random seed.
        set_random_seed(self.model_config.seed)

    def load_model(self, args):
        self.model_runner.load_model(args)

    @torch.inference_mode()
    def determine_num_available_blocks(self) -> Tuple[int, int]:
        """Profiles the peak memory usage of the model to determine how many
        KV blocks may be allocated without OOMs.

        The engine will first conduct a profiling of the existing memory usage.
        Then, it calculate the maximum possible number of GPU and CPU blocks
        that can be allocated with the remaining free memory.

        .. tip::
            You may limit the usage of GPU memory
            by adjusting the `gpu_memory_utilization` parameter.
        """
        # Profile the memory usage of the model and get the maximum number of
        # cache blocks that can be allocated with the remaining free memory.
        torch.cuda.empty_cache()

        # Execute a forward pass with dummy inputs to profile the memory usage
        # of the model.
        self.model_runner.profile_run()

        # Calculate the number of blocks that can be allocated with the
        # profiled peak memory.
        torch.cuda.synchronize()
        free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
        # NOTE(woosuk): Here we assume that the other processes using the same
        # GPU did not change their memory usage during the profiling.
        peak_memory = self.init_gpu_memory - free_gpu_memory
        assert peak_memory > 0, (
            "Error in memory profiling. This happens when the GPU memory was "
            "not properly cleaned up before initializing the vLLM instance.")

        cache_block_size = self.get_cache_block_size_bytes()
        num_gpu_blocks = int(
            (total_gpu_memory * self.cache_config.gpu_memory_utilization -
             peak_memory) // cache_block_size)
        num_cpu_blocks = int(self.cache_config.swap_space_bytes //
                             cache_block_size)
        num_gpu_blocks = max(num_gpu_blocks, 0)
        num_cpu_blocks = max(num_cpu_blocks, 0)
        if self.model_runner.lora_manager:
            self.model_runner.remove_all_loras()
        gc.collect()
        torch.cuda.empty_cache()
        return num_gpu_blocks, num_cpu_blocks

    def initialize_cache(self, num_gpu_blocks: int,
                         num_cpu_blocks: int) -> None:
        """Allocate GPU and CPU KV cache with the specified number of blocks.

        This also warms up the model, which may record CUDA graphs.
        """
        raise_if_cache_size_invalid(num_gpu_blocks,
                                    self.cache_config.block_size,
                                    self.model_config.max_model_len)

        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

        self._init_cache_engine()
        self._warm_up_model()

    def _init_cache_engine(self):
        assert self.cache_config.num_gpu_blocks is not None
        self.cache_engine = CacheEngine(self.cache_config, self.model_config,
                                        self.parallel_config)
        self.gpu_cache = self.cache_engine.gpu_cache
        self.model_runner.set_block_size(self.cache_engine.block_size)

    def _warm_up_model(self) -> None:
        if not self.model_config.enforce_eager:
            self.model_runner.capture_model(self.gpu_cache)
        # Reset the seed to ensure that the random state is not affected by
        # the model initialization and profiling.
        set_random_seed(self.model_config.seed)

    def cache_swap(
        self,
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
        blocks_to_copy: Dict[int, List[int]],
    ) -> None:
        # Issue cache operations.
        # TODO(woosuk): Profile swapping overhead and optimize if needed.
        if blocks_to_swap_in:
            self.cache_engine.swap_in(blocks_to_swap_in)
        if blocks_to_swap_out:
            self.cache_engine.swap_out(blocks_to_swap_out)
        if blocks_to_copy:
            self.cache_engine.copy(blocks_to_copy)

    @torch.inference_mode()
    def execute_model(
        self,
        seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
        blocks_to_swap_in: Optional[Dict[int, int]] = None,
        blocks_to_swap_out: Optional[Dict[int, int]] = None,
        blocks_to_copy: Optional[Dict[int, List[int]]] = None,
        num_lookahead_slots: int = 0,
    ) -> List[SamplerOutput]:

        if self.is_driver_worker:
            assert seq_group_metadata_list is not None
            num_seq_groups = len(seq_group_metadata_list)
            assert blocks_to_swap_in is not None
            assert blocks_to_swap_out is not None
            assert blocks_to_copy is not None
            data: Dict[str, Any] = {
                "num_seq_groups": num_seq_groups,
                "blocks_to_swap_in": blocks_to_swap_in,
                "blocks_to_swap_out": blocks_to_swap_out,
                "blocks_to_copy": blocks_to_copy,
            }
            broadcast_tensor_dict(data, src=0)
        else:
            data = broadcast_tensor_dict(src=0)
            num_seq_groups = data["num_seq_groups"]
            blocks_to_swap_in = data["blocks_to_swap_in"]
            blocks_to_swap_out = data["blocks_to_swap_out"]
            blocks_to_copy = data["blocks_to_copy"]

        assert blocks_to_swap_in is not None
        assert blocks_to_swap_out is not None
        assert blocks_to_copy is not None
        self.cache_swap(blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy)

        # If there is no input, we don't need to execute the model.
        if num_seq_groups == 0:
            return []

        output = self.model_runner.execute_model(seq_group_metadata_list,
                                                 self.gpu_cache)

        # Worker only supports single-step execution. Wrap the output in a list
        # to conform to interface.
        return [output]

    def add_lora(self, lora_request: LoRARequest) -> bool:
        return self.model_runner.add_lora(lora_request)

    def remove_lora(self, lora_id: int) -> bool:
        return self.model_runner.remove_lora(lora_id)

    def list_loras(self) -> Set[int]:
        return self.model_runner.list_loras()

    @property
    def max_model_len(self) -> int:
        return self.model_config.max_model_len

    @property
    def vocab_size(self) -> int:
        return self.model_runner.vocab_size

    def get_cache_block_size_bytes(self) -> int:
        """Get the size of the KV cache block size in bytes.
        """
        return CacheEngine.get_cache_block_size(self.cache_config,
                                                self.model_config,
                                                self.parallel_config)


def init_worker_distributed_environment(
    parallel_config: ParallelConfig,
    rank: int,
    distributed_init_method: Optional[str] = None,
    local_rank: int = -1,
) -> None:
    """Initialize the distributed environment."""
    init_distributed_environment(parallel_config.world_size, rank,
                                 distributed_init_method, local_rank)

    if pynccl_utils.is_initialized():
        pynccl_world_size = pynccl_utils.get_world_size()
        if pynccl_world_size != parallel_config.world_size:
            raise RuntimeError(
                "pynccl is already initialized but the pynccl world "
                "size does not match parallel_config.world_size "
                f"({pynccl_world_size} vs. {parallel_config.world_size}).")
    elif parallel_config.world_size > 1:
        # NOTE(woosuk): We don't initialize pynccl process group when world size
        # is 1.
        pynccl_utils.init_process_group(
            world_size=parallel_config.world_size,
            local_rank=local_rank,
            rank=rank,
            init_method=distributed_init_method,
        )

    ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
                                      parallel_config.pipeline_parallel_size)

    # Initialize a custom fast all-reduce implementation.
    if not parallel_config.disable_custom_all_reduce:
        init_custom_ar()

    # A small all_reduce for warmup.
    torch.distributed.all_reduce(torch.zeros(1).cuda())
    if pynccl_utils.is_initialized():
        pynccl_utils.all_reduce(torch.zeros(1).cuda())


def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
    # Check if the GPU supports the dtype.
    if torch_dtype == torch.bfloat16:
        compute_capability = torch.cuda.get_device_capability()
        if compute_capability[0] < 8:
            gpu_name = torch.cuda.get_device_name()
            raise ValueError(
                "Bfloat16 is only supported on GPUs with compute capability "
                f"of at least 8.0. Your {gpu_name} GPU has compute capability "
                f"{compute_capability[0]}.{compute_capability[1]}. "
                "You can use float16 instead by explicitly setting the"
                "`dtype` flag in CLI, for example: --dtype=half.")


def raise_if_cache_size_invalid(num_gpu_blocks, block_size,
                                max_model_len) -> None:
    if num_gpu_blocks <= 0:
        raise ValueError("No available memory for the cache blocks. "
                         "Try increasing `gpu_memory_utilization` when "
                         "initializing the engine.")
    max_seq_len = block_size * num_gpu_blocks
    if max_model_len > max_seq_len:
        raise ValueError(
            f"The model's max seq len ({max_model_len}) "
            "is larger than the maximum number of tokens that can be "
            f"stored in KV cache ({max_seq_len}). Try increasing "
            "`gpu_memory_utilization` or decreasing `max_model_len` when "
            "initializing the engine.")