Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from typing import Optional, List | |
import torch | |
import torch.nn as nn | |
from vllm.model_executor.layers.layernorm import RMSNorm | |
from vllm.model_executor.layers.activation import SiluAndMul | |
from vllm.model_executor.sampling_metadata import SamplingMetadata | |
from vllm.sequence import SamplerOutput | |
from vllm.attention import AttentionMetadata | |
from vllm.attention import Attention as pagedAttention | |
from vllm.model_executor.layers.logits_processor import LogitsProcessor | |
from serve.sampler import Sampler | |
def find_multiple(n: int, k: int): | |
if n % k == 0: | |
return n | |
return n + k - (n % k) | |
class ModelArgs: | |
dim: int = 4096 | |
n_layer: int = 32 | |
n_head: int = 32 | |
n_kv_head: Optional[int] = None | |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 | |
ffn_dim_multiplier: Optional[float] = None | |
rope_base: float = 10000 | |
norm_eps: float = 1e-5 | |
initializer_range: float = 0.02 | |
num_classes: int = 1000 | |
class_dropout_prob: float = 0.1 | |
model_type: str = 'c2i' | |
cfg_scale: float = 4.0 | |
vocab_size: int = 16384 | |
cls_token_num: int = 1 | |
block_size: int = 256 | |
max_batch_size: int = 32 | |
max_seq_len: int = 2048 | |
################################################################################# | |
# Embedding Layers for Class Labels # | |
################################################################################# | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
# def token_drop(self, labels, force_drop_ids=None): | |
# """ | |
# Drops labels to enable classifier-free guidance. | |
# """ | |
# if force_drop_ids is None: | |
# drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob | |
# else: | |
# drop_ids = force_drop_ids == 1 | |
# labels = torch.where(drop_ids, self.num_classes, labels) | |
# return labels | |
# def forward(self, labels, train, force_drop_ids=None): | |
def forward(self, labels): | |
# use_dropout = self.dropout_prob > 0 | |
# if (train and use_dropout) or (force_drop_ids is not None): | |
# labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
################################################################################# | |
# GPT Model # | |
################################################################################# | |
# class RMSNorm(torch.nn.Module): | |
# def __init__(self, dim: int, eps: float = 1e-5): | |
# super().__init__() | |
# self.eps = eps | |
# self.weight = nn.Parameter(torch.ones(dim)) | |
# def _norm(self, x): | |
# return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
# def forward(self, x): | |
# output = self._norm(x.float()).type_as(x) | |
# return output * self.weight | |
class FeedForward(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
hidden_dim = 4 * config.dim | |
hidden_dim = int(2 * hidden_dim / 3) | |
# custom dim factor multiplier | |
if config.ffn_dim_multiplier is not None: | |
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim) | |
hidden_dim = find_multiple(hidden_dim, config.multiple_of) | |
# self.w1 = nn.Linear(config.dim, hidden_dim, bias=False) | |
# self.w3 = nn.Linear(config.dim, hidden_dim, bias=False) | |
self.w_merged = nn.Linear(config.dim, hidden_dim * 2, bias=False) | |
self.act_fn = SiluAndMul() | |
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False) | |
# self.ffn_dropout = nn.Dropout(config.ffn_dropout_p) | |
# def forward(self, x): | |
# return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) | |
def forward(self, x): | |
x = self.w_merged(x) | |
x = self.act_fn(x) | |
x = self.w2(x) | |
# return self.ffn_dropout(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
assert config.dim % config.n_head == 0 | |
self.dim = config.dim | |
self.head_dim = config.dim // config.n_head | |
self.n_head = config.n_head | |
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head | |
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim | |
# key, query, value projections for all heads, but in a batch | |
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False) | |
self.wo = nn.Linear(config.dim, config.dim, bias=False) | |
# pagedAttention | |
self.attn = pagedAttention(self.n_head, | |
self.head_dim, | |
self.head_dim**-0.5, | |
num_kv_heads=self.n_kv_head, | |
) | |
# 2d rotary pos embedding | |
grid_size = int(config.block_size ** 0.5) | |
assert grid_size * grid_size == config.block_size | |
freqs_cis = precompute_freqs_cis_2d(grid_size, config.dim // config.n_head, config.rope_base, config.cls_token_num) | |
self.register_buffer('freqs_cis', freqs_cis) | |
def forward( | |
self, | |
x: torch.Tensor, | |
positions: torch.Tensor, | |
kv_cache: torch.Tensor, | |
attn_metadata: AttentionMetadata, | |
): | |
kv_size = self.n_kv_head * self.head_dim | |
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) | |
xq = xq.view(*xq.shape[:-1], 1, self.n_head, self.head_dim) | |
xk = xk.view(*xk.shape[:-1], 1, self.n_kv_head, self.head_dim) | |
freqs_cis = self.freqs_cis[positions].unsqueeze(1) | |
xq = apply_rotary_emb_bs(xq, freqs_cis) | |
xk = apply_rotary_emb_bs(xk, freqs_cis) | |
xq = xq.flatten(1) | |
xk = xk.flatten(1) | |
output = self.attn(xq, xk, xv, kv_cache, attn_metadata) | |
output = self.wo(output) | |
return output | |
class TransformerBlock(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
self.attention = Attention(config) | |
self.feed_forward = FeedForward(config) | |
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
def forward(self, x: torch.Tensor, positions: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata): | |
h = x + self.attention(self.attention_norm(x), positions, kv_cache, attn_metadata) | |
out = h + self.feed_forward(self.ffn_norm(h)) | |
return out | |
class Transformer(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
self.config = config | |
self.vocab_size = config.vocab_size | |
self.n_layer = config.n_layer | |
self.block_size = config.block_size | |
self.num_classes = config.num_classes | |
self.model_type = config.model_type | |
self.cls_token_num = config.cls_token_num | |
self.cfg_scale = config.cfg_scale | |
if self.model_type == 'c2i': | |
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob) | |
else: | |
raise Exception("vllm only supports c2i now, please check model type") | |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) | |
self.layers = torch.nn.ModuleList() | |
for layer_id in range(config.n_layer): | |
self.layers.append(TransformerBlock(config)) | |
# output layer | |
self.norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.output = nn.Linear(config.dim, config.vocab_size, bias=False) | |
self.logits_processor = LogitsProcessor(config.vocab_size) | |
self.sampler = Sampler(config.cfg_scale) | |
def forward( | |
self, | |
input_ids: torch.Tensor=None, | |
positions: torch.Tensor=None, | |
kv_caches: List[torch.Tensor]=None, | |
attn_metadata: AttentionMetadata=None, | |
): | |
# if positions.max() == 0: # prefill in inference | |
# token_embeddings = self.cls_embedding(input_ids) | |
# else: # decode_n_tokens(kv cache) in inference | |
# token_embeddings = self.tok_embeddings(input_ids) | |
cond_ids = torch.clamp(input_ids, max=self.num_classes) | |
token_embeddings = self.cls_embedding(cond_ids) * (positions.max() == 0) + \ | |
self.tok_embeddings(input_ids) * (positions.max() != 0) | |
hh = token_embeddings | |
# transformer blocks | |
for layer_id, layer in enumerate(self.layers): | |
hh = layer(hh, positions, kv_caches[layer_id], attn_metadata) | |
# output layers | |
hh = self.norm(hh) | |
return hh | |
def compute_logits(self, hidden_states: torch.Tensor, | |
sampling_metadata: SamplingMetadata) -> torch.Tensor: | |
logits = self.logits_processor(self.output.weight, hidden_states, sampling_metadata) | |
return logits | |
def sample( | |
self, | |
logits: torch.Tensor, | |
sampling_metadata: SamplingMetadata, | |
) -> Optional[SamplerOutput]: | |
next_tokens = self.sampler(logits, sampling_metadata) | |
return next_tokens | |
def custom_load_state_dict(self, model_weights): | |
model_weights = model_weights.copy() | |
for layer_id in range(len(self.layers)): | |
branch1 = f'layers.{layer_id}.feed_forward.w1.weight' | |
branch3 = f'layers.{layer_id}.feed_forward.w3.weight' | |
branch_merged = f'layers.{layer_id}.feed_forward.w_merged.weight' | |
model_weights[branch_merged] = torch.cat( | |
[model_weights[branch1], model_weights[branch3]], dim=0 | |
) | |
model_weights.pop(branch1) | |
model_weights.pop(branch3) | |
if 'freqs_cis' in model_weights: | |
model_weights.pop('freqs_cis') | |
self.load_state_dict(model_weights, strict=False) | |
################################################################################# | |
# Rotary Positional Embedding Functions # | |
################################################################################# | |
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py | |
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120): | |
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | |
t = torch.arange(seq_len, device=freqs.device) | |
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2) | |
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2) | |
return cond_cache | |
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120): | |
# split the dimension into half, one for x and one for y | |
half_dim = n_elem // 2 | |
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim)) | |
t = torch.arange(grid_size, device=freqs.device) | |
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2) | |
freqs_grid = torch.concat([ | |
freqs[:, None, :].expand(-1, grid_size, -1), | |
freqs[None, :, :].expand(grid_size, -1, -1), | |
], dim=-1) # (grid_size, grid_size, head_dim // 2) | |
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2) | |
cache = cache_grid.flatten(0, 1) | |
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2) | |
return cond_cache | |
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor): | |
# x: (bs, seq_len, n_head, head_dim) | |
# freqs_cis (seq_len, head_dim // 2, 2) | |
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2) | |
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2) | |
x_out2 = torch.stack([ | |
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
], dim=-1) | |
x_out2 = x_out2.flatten(3) | |
return x_out2.type_as(x) | |
def apply_rotary_emb_bs(x: torch.Tensor, freqs_cis: torch.Tensor): | |
# x: (bs, seq_len, n_head, head_dim) | |
# freqs_cis (seq_len, head_dim // 2, 2) | |
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2) | |
freqs_cis = freqs_cis.view(xshaped.size(0), xshaped.size(1), 1, xshaped.size(3), 2) # (bs, seq_len, 1, head_dim//2, 2) | |
x_out2 = torch.stack([ | |
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
], dim=-1) | |
x_out2 = x_out2.flatten(3) | |
return x_out2.type_as(x) | |
################################################################################# | |
# GPT Configs # | |
################################################################################# | |
### text-conditional | |
def GPT_7B(**kwargs): | |
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B | |
def GPT_3B(**kwargs): | |
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B | |
def GPT_1B(**kwargs): | |
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B | |
### class-conditional | |
def GPT_XXXL(**kwargs): | |
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B | |
def GPT_XXL(**kwargs): | |
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B | |
def GPT_XL(**kwargs): | |
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M | |
def GPT_L(**kwargs): | |
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M | |
def GPT_B(**kwargs): | |
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M | |
GPT_models = { | |
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL, | |
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B, | |
} |