LlamaGen / tokenizer_image /discriminator.py
ShoufaChen's picture
init
4d20c2f
# Modified from:
# taming-transformers: https://github.com/CompVis/taming-transformers
# stylegan2-pytorch: https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py
# maskgit: https://github.com/google-research/maskgit/blob/main/maskgit/nets/discriminator.py
import functools
import math
import torch
import torch.nn as nn
try:
from kornia.filters import filter2d
except:
pass
#################################################################################
# PatchGAN #
#################################################################################
class PatchGANDiscriminator(nn.Module):
"""Defines a PatchGAN discriminator as in Pix2Pix
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
"""
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
"""Construct a PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
n_layers (int) -- the number of conv layers in the discriminator
norm_layer -- normalization layer
"""
super(PatchGANDiscriminator, self).__init__()
if not use_actnorm:
norm_layer = nn.BatchNorm2d
else:
norm_layer = ActNorm
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func != nn.BatchNorm2d
else:
use_bias = norm_layer != nn.BatchNorm2d
kw = 4
padw = 1
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
self.main = nn.Sequential(*sequence)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.normal_(module.weight.data, 0.0, 0.02)
elif isinstance(module, nn.BatchNorm2d):
nn.init.normal_(module.weight.data, 1.0, 0.02)
nn.init.constant_(module.bias.data, 0)
def forward(self, input):
"""Standard forward."""
return self.main(input)
class ActNorm(nn.Module):
def __init__(self, num_features, logdet=False, affine=True,
allow_reverse_init=False):
assert affine
super().__init__()
self.logdet = logdet
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.allow_reverse_init = allow_reverse_init
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
def initialize(self, input):
with torch.no_grad():
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
mean = (
flatten.mean(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
std = (
flatten.std(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
self.loc.data.copy_(-mean)
self.scale.data.copy_(1 / (std + 1e-6))
def forward(self, input, reverse=False):
if reverse:
return self.reverse(input)
if len(input.shape) == 2:
input = input[:,:,None,None]
squeeze = True
else:
squeeze = False
_, _, height, width = input.shape
if self.training and self.initialized.item() == 0:
self.initialize(input)
self.initialized.fill_(1)
h = self.scale * (input + self.loc)
if squeeze:
h = h.squeeze(-1).squeeze(-1)
if self.logdet:
log_abs = torch.log(torch.abs(self.scale))
logdet = height*width*torch.sum(log_abs)
logdet = logdet * torch.ones(input.shape[0]).to(input)
return h, logdet
return h
def reverse(self, output):
if self.training and self.initialized.item() == 0:
if not self.allow_reverse_init:
raise RuntimeError(
"Initializing ActNorm in reverse direction is "
"disabled by default. Use allow_reverse_init=True to enable."
)
else:
self.initialize(output)
self.initialized.fill_(1)
if len(output.shape) == 2:
output = output[:,:,None,None]
squeeze = True
else:
squeeze = False
h = output / self.scale - self.loc
if squeeze:
h = h.squeeze(-1).squeeze(-1)
return h
#################################################################################
# StyleGAN #
#################################################################################
class StyleGANDiscriminator(nn.Module):
def __init__(self, input_nc=3, ndf=64, n_layers=3, channel_multiplier=1, image_size=256):
super().__init__()
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
}
log_size = int(math.log(image_size, 2))
in_channel = channels[image_size]
blocks = [nn.Conv2d(input_nc, in_channel, 3, padding=1), leaky_relu()]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
blocks.append(DiscriminatorBlock(in_channel, out_channel))
in_channel = out_channel
self.blocks = nn.ModuleList(blocks)
self.final_conv = nn.Sequential(
nn.Conv2d(in_channel, channels[4], 3, padding=1),
leaky_relu(),
)
self.final_linear = nn.Sequential(
nn.Linear(channels[4] * 4 * 4, channels[4]),
leaky_relu(),
nn.Linear(channels[4], 1)
)
def forward(self, x):
for block in self.blocks:
x = block(x)
x = self.final_conv(x)
x = x.view(x.shape[0], -1)
x = self.final_linear(x)
return x
class DiscriminatorBlock(nn.Module):
def __init__(self, input_channels, filters, downsample=True):
super().__init__()
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1))
self.net = nn.Sequential(
nn.Conv2d(input_channels, filters, 3, padding=1),
leaky_relu(),
nn.Conv2d(filters, filters, 3, padding=1),
leaky_relu()
)
self.downsample = nn.Sequential(
Blur(),
nn.Conv2d(filters, filters, 3, padding = 1, stride = 2)
) if downsample else None
def forward(self, x):
res = self.conv_res(x)
x = self.net(x)
if exists(self.downsample):
x = self.downsample(x)
x = (x + res) * (1 / math.sqrt(2))
return x
class Blur(nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer('f', f)
def forward(self, x):
f = self.f
f = f[None, None, :] * f [None, :, None]
return filter2d(x, f, normalized=True)
def leaky_relu(p=0.2):
return nn.LeakyReLU(p, inplace=True)
def exists(val):
return val is not None