peizesun commited on
Commit
ac1256d
1 Parent(s): 5c5e6fc

add app_t2i.py

Browse files
Files changed (1) hide show
  1. app_t2i.py +209 -0
app_t2i.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import gradio as gr
3
+ from huggingface_hub import hf_hub_download, snapshot_download
4
+ import torch
5
+ torch.backends.cuda.matmul.allow_tf32 = True
6
+ torch.backends.cudnn.allow_tf32 = True
7
+ torch.set_float32_matmul_precision('high')
8
+ setattr(torch.nn.Linear, 'reset_parameters', lambda self: None)
9
+ setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None)
10
+ import os
11
+ import time
12
+ import argparse
13
+ from tokenizer_image.vq_model import VQ_models
14
+ from models.gpt import GPT_models
15
+ from models.generate import generate
16
+ from t5 import T5Embedder
17
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
18
+
19
+ device = "cuda"
20
+
21
+ model2ckpt = {
22
+ "GPT-XL": ("vq_ds16_t2i.pt", "t2i_XL_stage2_512.pt", 512),
23
+ }
24
+
25
+ def load_model(args):
26
+ ckpt_folder = './'
27
+ t5_folder = os.path.join(ckpt_folder, "flan-t5-xl")
28
+ if not os.path.exists(t5_folder):
29
+ os.makedirs(t5_folder, exist_ok=True)
30
+ vq_ckpt, gpt_ckpt, image_size = model2ckpt[args.gpt_model]
31
+ hf_hub_download(repo_id="peizesun/llamagen_t2i", filename=vq_ckpt, local_dir=ckpt_folder)
32
+ hf_hub_download(repo_id="peizesun/llamagen_t2i", filename=gpt_ckpt, local_dir=ckpt_folder)
33
+ hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder)
34
+ hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder)
35
+ hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder)
36
+ hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model.bin.index.json", local_dir=t5_folder)
37
+ hf_hub_download(repo_id="google/flan-t5-xl", filename="special_tokens_map.json", local_dir=t5_folder)
38
+ hf_hub_download(repo_id="google/flan-t5-xl", filename="spiece.model", local_dir=t5_folder)
39
+ hf_hub_download(repo_id="google/flan-t5-xl", filename="tokenizer_config.json", local_dir=t5_folder)
40
+ # create and load model
41
+ vq_model = VQ_models[args.vq_model](
42
+ codebook_size=args.codebook_size,
43
+ codebook_embed_dim=args.codebook_embed_dim)
44
+ vq_model.to(device)
45
+ vq_model.eval()
46
+ checkpoint = torch.load(f"{ckpt_folder}{vq_ckpt}", map_location="cpu")
47
+ vq_model.load_state_dict(checkpoint["model"])
48
+ del checkpoint
49
+ print(f"image tokenizer is loaded")
50
+
51
+ # create and load gpt model
52
+ precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
53
+ latent_size = image_size // args.downsample_size
54
+ gpt_model = GPT_models[args.gpt_model](
55
+ vocab_size=args.codebook_size,
56
+ block_size=latent_size ** 2,
57
+ num_classes=args.num_classes,
58
+ cls_token_num=args.cls_token_num,
59
+ model_type=args.gpt_type,
60
+ ).to(device=device, dtype=precision)
61
+
62
+ checkpoint = torch.load(f"{ckpt_folder}{gpt_ckpt}", map_location="cpu")
63
+ if args.from_fsdp: # fspd
64
+ model_weight = checkpoint
65
+ elif "model" in checkpoint: # ddp
66
+ model_weight = checkpoint["model"]
67
+ elif "module" in checkpoint: # deepspeed
68
+ model_weight = checkpoint["module"]
69
+ elif "state_dict" in checkpoint:
70
+ model_weight = checkpoint["state_dict"]
71
+ else:
72
+ raise Exception("please check model weight")
73
+ # if 'freqs_cis' in model_weight:
74
+ # model_weight.pop('freqs_cis')
75
+ gpt_model.load_state_dict(model_weight, strict=False)
76
+ gpt_model.eval()
77
+ del checkpoint
78
+ print(f"gpt model is loaded")
79
+
80
+ if args.compile:
81
+ print(f"compiling the model...")
82
+ gpt_model = torch.compile(
83
+ gpt_model,
84
+ mode="reduce-overhead",
85
+ fullgraph=True
86
+ ) # requires PyTorch 2.0 (optional)
87
+ else:
88
+ print(f"no need to compile model in demo")
89
+
90
+ t5_model = T5Embedder(
91
+ device=device,
92
+ local_cache=True,
93
+ cache_dir=ckpt_folder,
94
+ dir_or_name="flan-t5-xl",
95
+ torch_dtype=precision,
96
+ model_max_length=args.t5_feature_max_len,
97
+ )
98
+
99
+ return t5_model, vq_model, gpt_model, image_size
100
+
101
+
102
+ def infer(cfg_scale, top_k, top_p, temperature, prompt, seed):
103
+ prompts = [prompt for _ in range(4)]
104
+ caption_embs, emb_masks = t5_model.get_text_embeddings(prompts)
105
+
106
+ if not args.no_left_padding:
107
+ print(f"processing left-padding...")
108
+ # a naive way to implement left-padding
109
+ new_emb_masks = torch.flip(emb_masks, dims=[-1])
110
+ new_caption_embs = []
111
+ for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
112
+ valid_num = int(emb_mask.sum().item())
113
+ print(f' prompt {idx} token len: {valid_num}')
114
+ new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]])
115
+ new_caption_embs.append(new_caption_emb)
116
+ new_caption_embs = torch.stack(new_caption_embs)
117
+ else:
118
+ new_caption_embs, new_emb_masks = caption_embs, emb_masks
119
+ c_indices = new_caption_embs * new_emb_masks[:,:, None]
120
+ c_emb_masks = new_emb_masks
121
+ qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]
122
+
123
+ t1 = time.time()
124
+ torch.manual_seed(seed)
125
+ index_sample = generate(
126
+ gpt_model, c_indices, latent_size ** 2,
127
+ c_emb_masks,
128
+ cfg_scale=cfg_scale, cfg_interval=args.cfg_interval,
129
+ temperature=temperature, top_k=top_k,
130
+ top_p=top_p, sample_logits=True,
131
+ )
132
+ sampling_time = time.time() - t1
133
+ print(f"gpt sampling takes about {sampling_time:.2f} seconds.")
134
+
135
+ t2 = time.time()
136
+ samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
137
+ decoder_time = time.time() - t2
138
+ print(f"decoder takes about {decoder_time:.2f} seconds.")
139
+ # Convert to PIL.Image format:
140
+ samples = samples.mul(127.5).add_(128.0).clamp_(0, 255).permute(0, 2, 3, 1).to("cpu", torch.uint8).numpy()
141
+ samples = [Image.fromarray(sample) for sample in samples]
142
+ return samples
143
+
144
+
145
+ parser = argparse.ArgumentParser()
146
+ parser.add_argument("--t5-path", type=str, default='.')
147
+ parser.add_argument("--t5-feature-max-len", type=int, default=120)
148
+ parser.add_argument("--t5-feature-dim", type=int, default=2048)
149
+ parser.add_argument("--no-left-padding", action='store_true', default=False)
150
+ parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
151
+ parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class-conditional or text-conditional")
152
+ parser.add_argument("--from-fsdp", action='store_true')
153
+ parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
154
+ parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
155
+ parser.add_argument("--compile", action='store_true', default=False)
156
+ parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
157
+ parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
158
+ parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
159
+ parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
160
+ parser.add_argument("--num-classes", type=int, default=1000)
161
+ parser.add_argument("--cfg-scale", type=float, default=7.5)
162
+ parser.add_argument("--cfg-interval", type=float, default=-1)
163
+ parser.add_argument("--seed", type=int, default=0)
164
+ parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with")
165
+ parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
166
+ parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
167
+ args = parser.parse_args()
168
+
169
+ t5_model, vq_model, gpt_model, image_size = load_model(args)
170
+ latent_size = image_size // args.downsample_size
171
+
172
+ examples = [
173
+ "A fluffy golden retriever puppy with big, soulful eyes sits in a sunlit garden, surrounded by colorful flowers and butterflies fluttering around its wagging tail.",
174
+ "A steaming bowl of Pho, filled with translucent rice noodles and thin slices of savory beef, topped with a heaping of fresh bean sprouts, a wedge of lime on the side, and a sprinkle of chopped green onions and cilantro.",
175
+ "An ethereal black and white landscape, where a solitary, sinuous black tree stands stark against a stark white snowy backdrop. Its branches twist intricately towards the sky, casting dramatic shadows on the untouched snow below.",
176
+ ]
177
+
178
+ with gr.Blocks() as demo:
179
+ gr.Markdown("<h1 style='text-align: center'>Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation</h1>")
180
+
181
+ with gr.Tabs():
182
+ with gr.TabItem('Generate'):
183
+ with gr.Row():
184
+ with gr.Column():
185
+ cfg_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=7.5, label='Classifier-free Guidance Scale')
186
+ top_k = gr.Slider(minimum=1, maximum=16384, step=1, value=4000, label='Top-K')
187
+ top_p = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label="Top-P")
188
+ temperature = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label='Temperature')
189
+ seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label='Seed')
190
+ with gr.Row():
191
+ text_prompt = gr.Textbox(
192
+ label="Enter your prompt",
193
+ show_label=False,
194
+ max_lines=1,
195
+ placeholder="Enter your prompt",
196
+ )
197
+ button = gr.Button("Generate", variant="primary")
198
+ gr.Examples(
199
+ label="Examples (select one example, and click Generate button)",
200
+ examples=examples,
201
+ inputs=text_prompt,
202
+ # outputs=[result],
203
+ # fn=generate,
204
+ )
205
+ with gr.Column():
206
+ output = gr.Gallery(label='Generated Images', height=700)
207
+ button.click(infer, inputs=[cfg_scale, top_k, top_p, temperature, text_prompt, seed], outputs=[output])
208
+ demo.queue()
209
+ demo.launch(debug=True, share=True)