from PIL import Image import gradio as gr from huggingface_hub import hf_hub_download, snapshot_download import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.set_float32_matmul_precision('high') setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) import os import time import argparse from tokenizer_image.vq_model import VQ_models from models.gpt import GPT_models from models.generate import generate from t5 import T5Embedder os.environ["TOKENIZERS_PARALLELISM"] = "false" device = "cuda" model2ckpt = { "GPT-XL": ("vq_ds16_t2i.pt", "t2i_XL_stage2_512.pt", 512), } def load_model(args): ckpt_folder = './' t5_folder = os.path.join(ckpt_folder, "flan-t5-xl") if not os.path.exists(t5_folder): os.makedirs(t5_folder, exist_ok=True) vq_ckpt, gpt_ckpt, image_size = model2ckpt[args.gpt_model] hf_hub_download(repo_id="peizesun/llamagen_t2i", filename=vq_ckpt, local_dir=ckpt_folder) hf_hub_download(repo_id="peizesun/llamagen_t2i", filename=gpt_ckpt, local_dir=ckpt_folder) hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder) hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder) hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder) hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model.bin.index.json", local_dir=t5_folder) hf_hub_download(repo_id="google/flan-t5-xl", filename="special_tokens_map.json", local_dir=t5_folder) hf_hub_download(repo_id="google/flan-t5-xl", filename="spiece.model", local_dir=t5_folder) hf_hub_download(repo_id="google/flan-t5-xl", filename="tokenizer_config.json", local_dir=t5_folder) # create and load model vq_model = VQ_models[args.vq_model]( codebook_size=args.codebook_size, codebook_embed_dim=args.codebook_embed_dim) vq_model.to(device) vq_model.eval() checkpoint = torch.load(f"{ckpt_folder}{vq_ckpt}", map_location="cpu") vq_model.load_state_dict(checkpoint["model"]) del checkpoint print(f"image tokenizer is loaded") # create and load gpt model precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] latent_size = image_size // args.downsample_size gpt_model = GPT_models[args.gpt_model]( vocab_size=args.codebook_size, block_size=latent_size ** 2, num_classes=args.num_classes, cls_token_num=args.cls_token_num, model_type=args.gpt_type, ).to(device=device, dtype=precision) checkpoint = torch.load(f"{ckpt_folder}{gpt_ckpt}", map_location="cpu") if args.from_fsdp: # fspd model_weight = checkpoint elif "model" in checkpoint: # ddp model_weight = checkpoint["model"] elif "module" in checkpoint: # deepspeed model_weight = checkpoint["module"] elif "state_dict" in checkpoint: model_weight = checkpoint["state_dict"] else: raise Exception("please check model weight") # if 'freqs_cis' in model_weight: # model_weight.pop('freqs_cis') gpt_model.load_state_dict(model_weight, strict=False) gpt_model.eval() del checkpoint print(f"gpt model is loaded") if args.compile: print(f"compiling the model...") gpt_model = torch.compile( gpt_model, mode="reduce-overhead", fullgraph=True ) # requires PyTorch 2.0 (optional) else: print(f"no need to compile model in demo") t5_model = T5Embedder( device=device, local_cache=True, cache_dir=ckpt_folder, dir_or_name="flan-t5-xl", torch_dtype=precision, model_max_length=args.t5_feature_max_len, ) return t5_model, vq_model, gpt_model, image_size def infer(cfg_scale, top_k, top_p, temperature, prompt, seed): prompts = [prompt for _ in range(4)] caption_embs, emb_masks = t5_model.get_text_embeddings(prompts) if not args.no_left_padding: print(f"processing left-padding...") # a naive way to implement left-padding new_emb_masks = torch.flip(emb_masks, dims=[-1]) new_caption_embs = [] for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)): valid_num = int(emb_mask.sum().item()) print(f' prompt {idx} token len: {valid_num}') new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]]) new_caption_embs.append(new_caption_emb) new_caption_embs = torch.stack(new_caption_embs) else: new_caption_embs, new_emb_masks = caption_embs, emb_masks c_indices = new_caption_embs * new_emb_masks[:,:, None] c_emb_masks = new_emb_masks qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size] t1 = time.time() torch.manual_seed(seed) index_sample = generate( gpt_model, c_indices, latent_size ** 2, c_emb_masks, cfg_scale=cfg_scale, cfg_interval=args.cfg_interval, temperature=temperature, top_k=top_k, top_p=top_p, sample_logits=True, ) sampling_time = time.time() - t1 print(f"gpt sampling takes about {sampling_time:.2f} seconds.") t2 = time.time() samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1] decoder_time = time.time() - t2 print(f"decoder takes about {decoder_time:.2f} seconds.") # Convert to PIL.Image format: samples = samples.mul(127.5).add_(128.0).clamp_(0, 255).permute(0, 2, 3, 1).to("cpu", torch.uint8).numpy() samples = [Image.fromarray(sample) for sample in samples] return samples parser = argparse.ArgumentParser() parser.add_argument("--t5-path", type=str, default='.') parser.add_argument("--t5-feature-max-len", type=int, default=120) parser.add_argument("--t5-feature-dim", type=int, default=2048) parser.add_argument("--no-left-padding", action='store_true', default=False) parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL") parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class-conditional or text-conditional") parser.add_argument("--from-fsdp", action='store_true') parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input") parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) parser.add_argument("--compile", action='store_true', default=False) parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) parser.add_argument("--num-classes", type=int, default=1000) parser.add_argument("--cfg-scale", type=float, default=7.5) parser.add_argument("--cfg-interval", type=float, default=-1) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with") parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") args = parser.parse_args() t5_model, vq_model, gpt_model, image_size = load_model(args) latent_size = image_size // args.downsample_size examples = [ "A fluffy golden retriever puppy with big, soulful eyes sits in a sunlit garden, surrounded by colorful flowers and butterflies fluttering around its wagging tail.", "A steaming bowl of Pho, filled with translucent rice noodles and thin slices of savory beef, topped with a heaping of fresh bean sprouts, a wedge of lime on the side, and a sprinkle of chopped green onions and cilantro.", "An ethereal black and white landscape, where a solitary, sinuous black tree stands stark against a stark white snowy backdrop. Its branches twist intricately towards the sky, casting dramatic shadows on the untouched snow below.", ] with gr.Blocks() as demo: gr.Markdown("