|
import hashlib |
|
import io |
|
import json |
|
import logging |
|
import os |
|
import time |
|
from pathlib import Path |
|
from inference import slicer |
|
import gc |
|
|
|
import librosa |
|
import numpy as np |
|
|
|
import soundfile |
|
import torch |
|
import torchaudio |
|
|
|
import cluster |
|
import utils |
|
from models import SynthesizerTrn |
|
|
|
from diffusion.unit2mel import load_model_vocoder |
|
import yaml |
|
|
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
|
|
|
|
def read_temp(file_name): |
|
if not os.path.exists(file_name): |
|
with open(file_name, "w") as f: |
|
f.write(json.dumps({"info": "temp_dict"})) |
|
return {} |
|
else: |
|
try: |
|
with open(file_name, "r") as f: |
|
data = f.read() |
|
data_dict = json.loads(data) |
|
if os.path.getsize(file_name) > 50 * 1024 * 1024: |
|
f_name = file_name.replace("\\", "/").split("/")[-1] |
|
print(f"clean {f_name}") |
|
for wav_hash in list(data_dict.keys()): |
|
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600: |
|
del data_dict[wav_hash] |
|
except Exception as e: |
|
print(e) |
|
print(f"{file_name} error,auto rebuild file") |
|
data_dict = {"info": "temp_dict"} |
|
return data_dict |
|
|
|
|
|
def write_temp(file_name, data): |
|
with open(file_name, "w") as f: |
|
f.write(json.dumps(data)) |
|
|
|
|
|
def timeit(func): |
|
def run(*args, **kwargs): |
|
t = time.time() |
|
res = func(*args, **kwargs) |
|
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) |
|
return res |
|
|
|
return run |
|
|
|
|
|
def format_wav(audio_path): |
|
if Path(audio_path).suffix == '.wav': |
|
return |
|
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None) |
|
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate) |
|
|
|
|
|
def get_end_file(dir_path, end): |
|
file_lists = [] |
|
for root, dirs, files in os.walk(dir_path): |
|
files = [f for f in files if f[0] != '.'] |
|
dirs[:] = [d for d in dirs if d[0] != '.'] |
|
for f_file in files: |
|
if f_file.endswith(end): |
|
file_lists.append(os.path.join(root, f_file).replace("\\", "/")) |
|
return file_lists |
|
|
|
|
|
def get_md5(content): |
|
return hashlib.new("md5", content).hexdigest() |
|
|
|
def fill_a_to_b(a, b): |
|
if len(a) < len(b): |
|
for _ in range(0, len(b) - len(a)): |
|
a.append(a[0]) |
|
|
|
def mkdir(paths: list): |
|
for path in paths: |
|
if not os.path.exists(path): |
|
os.mkdir(path) |
|
|
|
def pad_array(arr, target_length): |
|
current_length = arr.shape[0] |
|
if current_length >= target_length: |
|
return arr |
|
else: |
|
pad_width = target_length - current_length |
|
pad_left = pad_width // 2 |
|
pad_right = pad_width - pad_left |
|
padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0)) |
|
return padded_arr |
|
|
|
def split_list_by_n(list_collection, n, pre=0): |
|
for i in range(0, len(list_collection), n): |
|
yield list_collection[i-pre if i-pre>=0 else i: i + n] |
|
|
|
|
|
class F0FilterException(Exception): |
|
pass |
|
|
|
class Svc(object): |
|
def __init__(self, net_g_path, config_path, |
|
device=None, |
|
cluster_model_path="logs/44k/kmeans_10000.pt", |
|
nsf_hifigan_enhance = False, |
|
diffusion_model_path="logs/44k/diffusion/model_0.pt", |
|
diffusion_config_path="configs/diffusion.yaml", |
|
shallow_diffusion = False, |
|
only_diffusion = False, |
|
): |
|
self.net_g_path = net_g_path |
|
self.only_diffusion = only_diffusion |
|
self.shallow_diffusion = shallow_diffusion |
|
if device is None: |
|
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
else: |
|
self.dev = torch.device(device) |
|
self.net_g_ms = None |
|
if not self.only_diffusion: |
|
self.hps_ms = utils.get_hparams_from_file(config_path) |
|
self.target_sample = self.hps_ms.data.sampling_rate |
|
self.hop_size = self.hps_ms.data.hop_length |
|
self.spk2id = self.hps_ms.spk |
|
try: |
|
self.speech_encoder = self.hps_ms.model.speech_encoder |
|
except Exception as e: |
|
self.speech_encoder = 'vec768l12' |
|
|
|
self.nsf_hifigan_enhance = nsf_hifigan_enhance |
|
if self.shallow_diffusion or self.only_diffusion: |
|
if os.path.exists(diffusion_model_path) and os.path.exists(diffusion_model_path): |
|
self.diffusion_model,self.vocoder,self.diffusion_args = load_model_vocoder(diffusion_model_path,self.dev,config_path=diffusion_config_path) |
|
if self.only_diffusion: |
|
self.target_sample = self.diffusion_args.data.sampling_rate |
|
self.hop_size = self.diffusion_args.data.block_size |
|
self.spk2id = self.diffusion_args.spk |
|
self.speech_encoder = self.diffusion_args.data.encoder |
|
else: |
|
print("No diffusion model or config found. Shallow diffusion mode will False") |
|
self.shallow_diffusion = self.only_diffusion = False |
|
|
|
|
|
if not self.only_diffusion: |
|
self.load_model() |
|
self.hubert_model = utils.get_speech_encoder(self.speech_encoder,device=self.dev) |
|
self.volume_extractor = utils.Volume_Extractor(self.hop_size) |
|
else: |
|
self.hubert_model = utils.get_speech_encoder(self.diffusion_args.data.encoder,device=self.dev) |
|
self.volume_extractor = utils.Volume_Extractor(self.diffusion_args.data.block_size) |
|
|
|
if os.path.exists(cluster_model_path): |
|
self.cluster_model = cluster.get_cluster_model(cluster_model_path) |
|
if self.shallow_diffusion : self.nsf_hifigan_enhance = False |
|
if self.nsf_hifigan_enhance: |
|
from modules.enhancer import Enhancer |
|
self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev) |
|
|
|
def load_model(self): |
|
|
|
self.net_g_ms = SynthesizerTrn( |
|
self.hps_ms.data.filter_length // 2 + 1, |
|
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, |
|
**self.hps_ms.model) |
|
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None) |
|
if "half" in self.net_g_path and torch.cuda.is_available(): |
|
_ = self.net_g_ms.half().eval().to(self.dev) |
|
else: |
|
_ = self.net_g_ms.eval().to(self.dev) |
|
|
|
|
|
|
|
def get_unit_f0(self, wav, tran, cluster_infer_ratio, speaker, f0_filter ,f0_predictor,cr_threshold=0.05): |
|
|
|
f0_predictor_object = utils.get_f0_predictor(f0_predictor,hop_length=self.hop_size,sampling_rate=self.target_sample,device=self.dev,threshold=cr_threshold) |
|
|
|
f0, uv = f0_predictor_object.compute_f0_uv(wav) |
|
if f0_filter and sum(f0) == 0: |
|
raise F0FilterException("No voice detected") |
|
f0 = torch.FloatTensor(f0).to(self.dev) |
|
uv = torch.FloatTensor(uv).to(self.dev) |
|
|
|
f0 = f0 * 2 ** (tran / 12) |
|
f0 = f0.unsqueeze(0) |
|
uv = uv.unsqueeze(0) |
|
|
|
wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000) |
|
wav16k = torch.from_numpy(wav16k).to(self.dev) |
|
c = self.hubert_model.encoder(wav16k) |
|
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1]) |
|
|
|
if cluster_infer_ratio !=0: |
|
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T |
|
cluster_c = torch.FloatTensor(cluster_c).to(self.dev) |
|
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c |
|
|
|
c = c.unsqueeze(0) |
|
return c, f0, uv |
|
|
|
def infer(self, speaker, tran, raw_path, |
|
cluster_infer_ratio=0, |
|
auto_predict_f0=False, |
|
noice_scale=0.4, |
|
f0_filter=False, |
|
f0_predictor='pm', |
|
enhancer_adaptive_key = 0, |
|
cr_threshold = 0.05, |
|
k_step = 100 |
|
): |
|
|
|
speaker_id = self.spk2id.get(speaker) |
|
if not speaker_id and type(speaker) is int: |
|
if len(self.spk2id.__dict__) >= speaker: |
|
speaker_id = speaker |
|
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0) |
|
wav, sr = librosa.load(raw_path, sr=self.target_sample) |
|
c, f0, uv = self.get_unit_f0(wav, tran, cluster_infer_ratio, speaker, f0_filter,f0_predictor,cr_threshold=cr_threshold) |
|
if "half" in self.net_g_path and torch.cuda.is_available(): |
|
c = c.half() |
|
with torch.no_grad(): |
|
start = time.time() |
|
if not self.only_diffusion: |
|
audio,f0 = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale) |
|
audio = audio[0,0].data.float() |
|
if self.shallow_diffusion: |
|
audio_mel = self.vocoder.extract(audio[None,:],self.target_sample) |
|
else: |
|
audio = torch.FloatTensor(wav).to(self.dev) |
|
audio_mel = None |
|
if self.only_diffusion or self.shallow_diffusion: |
|
vol = self.volume_extractor.extract(audio[None,:])[None,:,None].to(self.dev) |
|
f0 = f0[:,:,None] |
|
c = c.transpose(-1,-2) |
|
audio_mel = self.diffusion_model( |
|
c, |
|
f0, |
|
vol, |
|
spk_id = sid, |
|
spk_mix_dict = None, |
|
gt_spec=audio_mel, |
|
infer=True, |
|
infer_speedup=self.diffusion_args.infer.speedup, |
|
method=self.diffusion_args.infer.method, |
|
k_step=k_step) |
|
audio = self.vocoder.infer(audio_mel, f0).squeeze() |
|
if self.nsf_hifigan_enhance: |
|
audio, _ = self.enhancer.enhance( |
|
audio[None,:], |
|
self.target_sample, |
|
f0[:,:,None], |
|
self.hps_ms.data.hop_length, |
|
adaptive_key = enhancer_adaptive_key) |
|
use_time = time.time() - start |
|
print("vits use time:{}".format(use_time)) |
|
return audio, audio.shape[-1] |
|
|
|
def clear_empty(self): |
|
|
|
torch.cuda.empty_cache() |
|
|
|
def unload_model(self): |
|
|
|
self.net_g_ms = self.net_g_ms.to("cpu") |
|
del self.net_g_ms |
|
if hasattr(self,"enhancer"): |
|
self.enhancer.enhancer = self.enhancer.enhancer.to("cpu") |
|
del self.enhancer.enhancer |
|
del self.enhancer |
|
gc.collect() |
|
|
|
def slice_inference(self, |
|
raw_audio_path, |
|
spk, |
|
tran, |
|
slice_db, |
|
cluster_infer_ratio, |
|
auto_predict_f0, |
|
noice_scale, |
|
pad_seconds=0.5, |
|
clip_seconds=0, |
|
lg_num=0, |
|
lgr_num =0.75, |
|
f0_predictor='pm', |
|
enhancer_adaptive_key = 0, |
|
cr_threshold = 0.05, |
|
k_step = 100 |
|
): |
|
wav_path = Path(raw_audio_path).with_suffix('.wav') |
|
chunks = slicer.cut(wav_path, db_thresh=slice_db) |
|
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) |
|
per_size = int(clip_seconds*audio_sr) |
|
lg_size = int(lg_num*audio_sr) |
|
lg_size_r = int(lg_size*lgr_num) |
|
lg_size_c_l = (lg_size-lg_size_r)//2 |
|
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l |
|
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0 |
|
|
|
audio = [] |
|
for (slice_tag, data) in audio_data: |
|
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') |
|
|
|
length = int(np.ceil(len(data) / audio_sr * self.target_sample)) |
|
if slice_tag: |
|
print('jump empty segment') |
|
_audio = np.zeros(length) |
|
audio.extend(list(pad_array(_audio, length))) |
|
continue |
|
if per_size != 0: |
|
datas = split_list_by_n(data, per_size,lg_size) |
|
else: |
|
datas = [data] |
|
for k,dat in enumerate(datas): |
|
per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length |
|
if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======') |
|
|
|
pad_len = int(audio_sr * pad_seconds) |
|
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])]) |
|
raw_path = io.BytesIO() |
|
soundfile.write(raw_path, dat, audio_sr, format="wav") |
|
raw_path.seek(0) |
|
out_audio, out_sr = self.infer(spk, tran, raw_path, |
|
cluster_infer_ratio=cluster_infer_ratio, |
|
auto_predict_f0=auto_predict_f0, |
|
noice_scale=noice_scale, |
|
f0_predictor = f0_predictor, |
|
enhancer_adaptive_key = enhancer_adaptive_key, |
|
cr_threshold = cr_threshold, |
|
k_step = k_step |
|
) |
|
_audio = out_audio.cpu().numpy() |
|
pad_len = int(self.target_sample * pad_seconds) |
|
_audio = _audio[pad_len:-pad_len] |
|
_audio = pad_array(_audio, per_length) |
|
if lg_size!=0 and k!=0: |
|
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:] |
|
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size] |
|
lg_pre = lg1*(1-lg)+lg2*lg |
|
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size] |
|
audio.extend(lg_pre) |
|
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:] |
|
audio.extend(list(_audio)) |
|
return np.array(audio) |
|
|
|
class RealTimeVC: |
|
def __init__(self): |
|
self.last_chunk = None |
|
self.last_o = None |
|
self.chunk_len = 16000 |
|
self.pre_len = 3840 |
|
|
|
|
|
|
|
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path, |
|
cluster_infer_ratio=0, |
|
auto_predict_f0=False, |
|
noice_scale=0.4, |
|
f0_filter=False): |
|
|
|
import maad |
|
audio, sr = torchaudio.load(input_wav_path) |
|
audio = audio.cpu().numpy()[0] |
|
temp_wav = io.BytesIO() |
|
if self.last_chunk is None: |
|
input_wav_path.seek(0) |
|
|
|
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path, |
|
cluster_infer_ratio=cluster_infer_ratio, |
|
auto_predict_f0=auto_predict_f0, |
|
noice_scale=noice_scale, |
|
f0_filter=f0_filter) |
|
|
|
audio = audio.cpu().numpy() |
|
self.last_chunk = audio[-self.pre_len:] |
|
self.last_o = audio |
|
return audio[-self.chunk_len:] |
|
else: |
|
audio = np.concatenate([self.last_chunk, audio]) |
|
soundfile.write(temp_wav, audio, sr, format="wav") |
|
temp_wav.seek(0) |
|
|
|
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav, |
|
cluster_infer_ratio=cluster_infer_ratio, |
|
auto_predict_f0=auto_predict_f0, |
|
noice_scale=noice_scale, |
|
f0_filter=f0_filter) |
|
|
|
audio = audio.cpu().numpy() |
|
ret = maad.util.crossfade(self.last_o, audio, self.pre_len) |
|
self.last_chunk = audio[-self.pre_len:] |
|
self.last_o = audio |
|
return ret[self.chunk_len:2 * self.chunk_len] |
|
|