|
from diffusion_onnx import GaussianDiffusion |
|
import os |
|
import yaml |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from wavenet import WaveNet |
|
import torch.nn.functional as F |
|
import diffusion |
|
|
|
class DotDict(dict): |
|
def __getattr__(*args): |
|
val = dict.get(*args) |
|
return DotDict(val) if type(val) is dict else val |
|
|
|
__setattr__ = dict.__setitem__ |
|
__delattr__ = dict.__delitem__ |
|
|
|
|
|
def load_model_vocoder( |
|
model_path, |
|
device='cpu'): |
|
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml') |
|
with open(config_file, "r") as config: |
|
args = yaml.safe_load(config) |
|
args = DotDict(args) |
|
|
|
|
|
model = Unit2Mel( |
|
args.data.encoder_out_channels, |
|
args.model.n_spk, |
|
args.model.use_pitch_aug, |
|
128, |
|
args.model.n_layers, |
|
args.model.n_chans, |
|
args.model.n_hidden) |
|
|
|
print(' [Loading] ' + model_path) |
|
ckpt = torch.load(model_path, map_location=torch.device(device)) |
|
model.to(device) |
|
model.load_state_dict(ckpt['model']) |
|
model.eval() |
|
return model, args |
|
|
|
|
|
class Unit2Mel(nn.Module): |
|
def __init__( |
|
self, |
|
input_channel, |
|
n_spk, |
|
use_pitch_aug=False, |
|
out_dims=128, |
|
n_layers=20, |
|
n_chans=384, |
|
n_hidden=256): |
|
super().__init__() |
|
self.unit_embed = nn.Linear(input_channel, n_hidden) |
|
self.f0_embed = nn.Linear(1, n_hidden) |
|
self.volume_embed = nn.Linear(1, n_hidden) |
|
if use_pitch_aug: |
|
self.aug_shift_embed = nn.Linear(1, n_hidden, bias=False) |
|
else: |
|
self.aug_shift_embed = None |
|
self.n_spk = n_spk |
|
if n_spk is not None and n_spk > 1: |
|
self.spk_embed = nn.Embedding(n_spk, n_hidden) |
|
|
|
|
|
self.decoder = GaussianDiffusion(out_dims, n_layers, n_chans, n_hidden) |
|
self.hidden_size = n_hidden |
|
self.speaker_map = torch.zeros((self.n_spk,1,1,n_hidden)) |
|
|
|
|
|
|
|
def forward(self, units, mel2ph, f0, volume, g = None): |
|
|
|
''' |
|
input: |
|
B x n_frames x n_unit |
|
return: |
|
dict of B x n_frames x feat |
|
''' |
|
|
|
decoder_inp = F.pad(units, [0, 0, 1, 0]) |
|
mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, units.shape[-1]]) |
|
units = torch.gather(decoder_inp, 1, mel2ph_) |
|
|
|
x = self.unit_embed(units) + self.f0_embed((1 + f0.unsqueeze(-1) / 700).log()) + self.volume_embed(volume.unsqueeze(-1)) |
|
|
|
if self.n_spk is not None and self.n_spk > 1: |
|
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) |
|
g = g * self.speaker_map |
|
g = torch.sum(g, dim=1) |
|
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) |
|
x = x.transpose(1, 2) + g |
|
return x |
|
else: |
|
return x.transpose(1, 2) |
|
|
|
|
|
def init_spkembed(self, units, f0, volume, spk_id = None, spk_mix_dict = None, aug_shift = None, |
|
gt_spec=None, infer=True, infer_speedup=10, method='dpm-solver', k_step=300, use_tqdm=True): |
|
|
|
''' |
|
input: |
|
B x n_frames x n_unit |
|
return: |
|
dict of B x n_frames x feat |
|
''' |
|
x = self.unit_embed(units) + self.f0_embed((1+ f0 / 700).log()) + self.volume_embed(volume) |
|
if self.n_spk is not None and self.n_spk > 1: |
|
if spk_mix_dict is not None: |
|
spk_embed_mix = torch.zeros((1,1,self.hidden_size)) |
|
for k, v in spk_mix_dict.items(): |
|
spk_id_torch = torch.LongTensor(np.array([[k]])).to(units.device) |
|
spk_embeddd = self.spk_embed(spk_id_torch) |
|
self.speaker_map[k] = spk_embeddd |
|
spk_embed_mix = spk_embed_mix + v * spk_embeddd |
|
x = x + spk_embed_mix |
|
else: |
|
x = x + self.spk_embed(spk_id - 1) |
|
self.speaker_map = self.speaker_map.unsqueeze(0) |
|
self.speaker_map = self.speaker_map.detach() |
|
return x.transpose(1, 2) |
|
|
|
def OnnxExport(self, project_name=None, init_noise=None, export_encoder=True, export_denoise=True, export_pred=True, export_after=True): |
|
hubert_hidden_size = 768 |
|
n_frames = 100 |
|
hubert = torch.randn((1, n_frames, hubert_hidden_size)) |
|
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long() |
|
f0 = torch.randn((1, n_frames)) |
|
volume = torch.randn((1, n_frames)) |
|
spk_mix = [] |
|
spks = {} |
|
if self.n_spk is not None and self.n_spk > 1: |
|
for i in range(self.n_spk): |
|
spk_mix.append(1.0/float(self.n_spk)) |
|
spks.update({i:1.0/float(self.n_spk)}) |
|
spk_mix = torch.tensor(spk_mix) |
|
spk_mix = spk_mix.repeat(n_frames, 1) |
|
orgouttt = self.init_spkembed(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks) |
|
outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix) |
|
if export_encoder: |
|
torch.onnx.export( |
|
self, |
|
(hubert, mel2ph, f0, volume, spk_mix), |
|
f"{project_name}_encoder.onnx", |
|
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"], |
|
output_names=["mel_pred"], |
|
dynamic_axes={ |
|
"hubert": [1], |
|
"f0": [1], |
|
"volume": [1], |
|
"mel2ph": [1], |
|
"spk_mix": [0], |
|
}, |
|
opset_version=16 |
|
) |
|
|
|
self.decoder.OnnxExport(project_name, init_noise=init_noise, export_denoise=export_denoise, export_pred=export_pred, export_after=export_after) |
|
|
|
def ExportOnnx(self, project_name=None): |
|
hubert_hidden_size = 768 |
|
n_frames = 100 |
|
hubert = torch.randn((1, n_frames, hubert_hidden_size)) |
|
mel2ph = torch.arange(end=n_frames).unsqueeze(0).long() |
|
f0 = torch.randn((1, n_frames)) |
|
volume = torch.randn((1, n_frames)) |
|
spk_mix = [] |
|
spks = {} |
|
if self.n_spk is not None and self.n_spk > 1: |
|
for i in range(self.n_spk): |
|
spk_mix.append(1.0/float(self.n_spk)) |
|
spks.update({i:1.0/float(self.n_spk)}) |
|
spk_mix = torch.tensor(spk_mix) |
|
orgouttt = self.orgforward(hubert, f0.unsqueeze(-1), volume.unsqueeze(-1), spk_mix_dict=spks) |
|
outtt = self.forward(hubert, mel2ph, f0, volume, spk_mix) |
|
|
|
torch.onnx.export( |
|
self, |
|
(hubert, mel2ph, f0, volume, spk_mix), |
|
f"{project_name}_encoder.onnx", |
|
input_names=["hubert", "mel2ph", "f0", "volume", "spk_mix"], |
|
output_names=["mel_pred"], |
|
dynamic_axes={ |
|
"hubert": [1], |
|
"f0": [1], |
|
"volume": [1], |
|
"mel2ph": [1] |
|
}, |
|
opset_version=16 |
|
) |
|
|
|
condition = torch.randn(1,self.decoder.n_hidden,n_frames) |
|
noise = torch.randn((1, 1, self.decoder.mel_bins, condition.shape[2]), dtype=torch.float32) |
|
pndm_speedup = torch.LongTensor([100]) |
|
K_steps = torch.LongTensor([1000]) |
|
self.decoder = torch.jit.script(self.decoder) |
|
self.decoder(condition, noise, pndm_speedup, K_steps) |
|
|
|
torch.onnx.export( |
|
self.decoder, |
|
(condition, noise, pndm_speedup, K_steps), |
|
f"{project_name}_diffusion.onnx", |
|
input_names=["condition", "noise", "pndm_speedup", "K_steps"], |
|
output_names=["mel"], |
|
dynamic_axes={ |
|
"condition": [2], |
|
"noise": [3], |
|
}, |
|
opset_version=16 |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
project_name = "dddsp" |
|
model_path = f'{project_name}/model_500000.pt' |
|
|
|
model, _ = load_model_vocoder(model_path) |
|
|
|
|
|
model.OnnxExport(project_name, export_encoder=True, export_denoise=True, export_pred=True, export_after=True) |
|
|
|
|
|
|
|
|
|
|