File size: 24,639 Bytes
ce252ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
from collections import deque
from functools import partial
from inspect import isfunction
import torch.nn.functional as F
import librosa.sequence
import numpy as np
from torch.nn import Conv1d
from torch.nn import Mish
import torch
from torch import nn
from tqdm import tqdm
import math


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def extract(a, t):
    return a[t].reshape((1, 1, 1, 1))


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def linear_beta_schedule(timesteps, max_beta=0.02):
    """
    linear schedule
    """
    betas = np.linspace(1e-4, max_beta, timesteps)
    return betas


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = np.linspace(0, steps, steps)
    alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return np.clip(betas, a_min=0, a_max=0.999)


beta_schedule = {
    "cosine": cosine_beta_schedule,
    "linear": linear_beta_schedule,
}


def extract_1(a, t):
    return a[t].reshape((1, 1, 1, 1))


def predict_stage0(noise_pred, noise_pred_prev):
    return (noise_pred + noise_pred_prev) / 2


def predict_stage1(noise_pred, noise_list):
    return (noise_pred * 3
            - noise_list[-1]) / 2


def predict_stage2(noise_pred, noise_list):
    return (noise_pred * 23
            - noise_list[-1] * 16
            + noise_list[-2] * 5) / 12


def predict_stage3(noise_pred, noise_list):
    return (noise_pred * 55
            - noise_list[-1] * 59
            + noise_list[-2] * 37
            - noise_list[-3] * 9) / 24


class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim
        self.half_dim = dim // 2
        self.emb = 9.21034037 / (self.half_dim - 1)
        self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
        self.emb = self.emb.cpu()

    def forward(self, x):
        emb = self.emb * x
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class ResidualBlock(nn.Module):
    def __init__(self, encoder_hidden, residual_channels, dilation):
        super().__init__()
        self.residual_channels = residual_channels
        self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
        self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
        self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
        self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)

    def forward(self, x, conditioner, diffusion_step):
        diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
        conditioner = self.conditioner_projection(conditioner)
        y = x + diffusion_step
        y = self.dilated_conv(y) + conditioner

        gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)

        y = torch.sigmoid(gate) * torch.tanh(filter_1)
        y = self.output_projection(y)

        residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)

        return (x + residual) / 1.41421356, skip


class DiffNet(nn.Module):
    def __init__(self, in_dims, n_layers, n_chans, n_hidden):
        super().__init__()
        self.encoder_hidden = n_hidden
        self.residual_layers = n_layers
        self.residual_channels = n_chans
        self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
        self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
        dim = self.residual_channels
        self.mlp = nn.Sequential(
            nn.Linear(dim, dim * 4),
            Mish(),
            nn.Linear(dim * 4, dim)
        )
        self.residual_layers = nn.ModuleList([
            ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
            for i in range(self.residual_layers)
        ])
        self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
        self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
        nn.init.zeros_(self.output_projection.weight)

    def forward(self, spec, diffusion_step, cond):
        x = spec.squeeze(0)
        x = self.input_projection(x)  # x [B, residual_channel, T]
        x = F.relu(x)
        # skip = torch.randn_like(x)
        diffusion_step = diffusion_step.float()
        diffusion_step = self.diffusion_embedding(diffusion_step)
        diffusion_step = self.mlp(diffusion_step)

        x, skip = self.residual_layers[0](x, cond, diffusion_step)
        # noinspection PyTypeChecker
        for layer in self.residual_layers[1:]:
            x, skip_connection = layer.forward(x, cond, diffusion_step)
            skip = skip + skip_connection
        x = skip / math.sqrt(len(self.residual_layers))
        x = self.skip_projection(x)
        x = F.relu(x)
        x = self.output_projection(x)  # [B, 80, T]
        return x.unsqueeze(1)


class AfterDiffusion(nn.Module):
    def __init__(self, spec_max, spec_min, v_type='a'):
        super().__init__()
        self.spec_max = spec_max
        self.spec_min = spec_min
        self.type = v_type

    def forward(self, x):
        x = x.squeeze(1).permute(0, 2, 1)
        mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
        if self.type == 'nsf-hifigan-log10':
            mel_out = mel_out * 0.434294
        return mel_out.transpose(2, 1)


class Pred(nn.Module):
    def __init__(self, alphas_cumprod):
        super().__init__()
        self.alphas_cumprod = alphas_cumprod

    def forward(self, x_1, noise_t, t_1, t_prev):
        a_t = extract(self.alphas_cumprod, t_1).cpu()
        a_prev = extract(self.alphas_cumprod, t_prev).cpu()
        a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
        x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
                a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
        x_pred = x_1 + x_delta.cpu()

        return x_pred


class GaussianDiffusion(nn.Module):
    def __init__(self, 
                out_dims=128,
                n_layers=20,
                n_chans=384,
                n_hidden=256,
                timesteps=1000, 
                k_step=1000,
                max_beta=0.02,
                spec_min=-12, 
                spec_max=2):
        super().__init__()
        self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
        self.out_dims = out_dims
        self.mel_bins = out_dims
        self.n_hidden = n_hidden
        betas = beta_schedule['linear'](timesteps, max_beta=max_beta)

        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.k_step = k_step

        self.noise_list = deque(maxlen=4)

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))

        self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
        self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
        self.ad = AfterDiffusion(self.spec_max, self.spec_min)
        self.xp = Pred(self.alphas_cumprod)

    def q_mean_variance(self, x_start, t):
        mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance

    def predict_start_from_noise(self, x_t, t, noise):
        return (
                extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, cond):
        noise_pred = self.denoise_fn(x, t, cond=cond)
        x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)

        x_recon.clamp_(-1., 1.)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
        """
        Use the PLMS method from
        [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
        """

        def get_x_pred(x, noise_t, t):
            a_t = extract(self.alphas_cumprod, t)
            a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
            a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()

            x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
                    a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
            x_pred = x + x_delta

            return x_pred

        noise_list = self.noise_list
        noise_pred = self.denoise_fn(x, t, cond=cond)

        if len(noise_list) == 0:
            x_pred = get_x_pred(x, noise_pred, t)
            noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
            noise_pred_prime = (noise_pred + noise_pred_prev) / 2
        elif len(noise_list) == 1:
            noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
        elif len(noise_list) == 2:
            noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
        else:
            noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24

        x_prev = get_x_pred(x, noise_pred_prime, t)
        noise_list.append(noise_pred)

        return x_prev

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (
                extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

    def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
        noise = default(noise, lambda: torch.randn_like(x_start))

        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        x_recon = self.denoise_fn(x_noisy, t, cond)

        if loss_type == 'l1':
            loss = (noise - x_recon).abs().mean()
        elif loss_type == 'l2':
            loss = F.mse_loss(noise, x_recon)
        else:
            raise NotImplementedError()

        return loss

    def org_forward(self, 
                condition, 
                init_noise=None,
                gt_spec=None, 
                infer=True, 
                infer_speedup=100, 
                method='pndm',
                k_step=1000,
                use_tqdm=True):
        """
            conditioning diffusion, use fastspeech2 encoder output as the condition
        """
        cond = condition
        b, device = condition.shape[0], condition.device
        if not infer:
            spec = self.norm_spec(gt_spec)
            t = torch.randint(0, self.k_step, (b,), device=device).long()
            norm_spec = spec.transpose(1, 2)[:, None, :, :]  # [B, 1, M, T]
            return self.p_losses(norm_spec, t, cond=cond)
        else:
            shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
            
            if gt_spec is None:
                t = self.k_step
                if init_noise is None:
                    x = torch.randn(shape, device=device)
                else:
                    x = init_noise
            else:
                t = k_step
                norm_spec = self.norm_spec(gt_spec)
                norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
                x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
                        
            if method is not None and infer_speedup > 1:
                if method == 'dpm-solver':
                    from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
                    # 1. Define the noise schedule.
                    noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])

                    # 2. Convert your discrete-time `model` to the continuous-time
                    # noise prediction model. Here is an example for a diffusion model
                    # `model` with the noise prediction type ("noise") .
                    def my_wrapper(fn):
                        def wrapped(x, t, **kwargs):
                            ret = fn(x, t, **kwargs)
                            if use_tqdm:
                                self.bar.update(1)
                            return ret

                        return wrapped

                    model_fn = model_wrapper(
                        my_wrapper(self.denoise_fn),
                        noise_schedule,
                        model_type="noise",  # or "x_start" or "v" or "score"
                        model_kwargs={"cond": cond}
                    )

                    # 3. Define dpm-solver and sample by singlestep DPM-Solver.
                    # (We recommend singlestep DPM-Solver for unconditional sampling)
                    # You can adjust the `steps` to balance the computation
                    # costs and the sample quality.
                    dpm_solver = DPM_Solver(model_fn, noise_schedule)

                    steps = t // infer_speedup
                    if use_tqdm:
                        self.bar = tqdm(desc="sample time step", total=steps)
                    x = dpm_solver.sample(
                        x,
                        steps=steps,
                        order=3,
                        skip_type="time_uniform",
                        method="singlestep",
                    )
                    if use_tqdm:
                        self.bar.close()
                elif method == 'pndm':
                    self.noise_list = deque(maxlen=4)
                    if use_tqdm:
                        for i in tqdm(
                                reversed(range(0, t, infer_speedup)), desc='sample time step',
                                total=t // infer_speedup,
                        ):
                            x = self.p_sample_plms(
                                x, torch.full((b,), i, device=device, dtype=torch.long),
                                infer_speedup, cond=cond
                            )
                    else:
                        for i in reversed(range(0, t, infer_speedup)):
                            x = self.p_sample_plms(
                                x, torch.full((b,), i, device=device, dtype=torch.long),
                                infer_speedup, cond=cond
                            )
                else:
                    raise NotImplementedError(method)
            else:
                if use_tqdm:
                    for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
                        x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
                else:
                    for i in reversed(range(0, t)):
                        x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
            x = x.squeeze(1).transpose(1, 2)  # [B, T, M]
            return self.denorm_spec(x).transpose(2, 1)

    def norm_spec(self, x):
        return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1

    def denorm_spec(self, x):
        return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min

    def get_x_pred(self, x_1, noise_t, t_1, t_prev):
        a_t = extract(self.alphas_cumprod, t_1)
        a_prev = extract(self.alphas_cumprod, t_prev)
        a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
        x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
                a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
        x_pred = x_1 + x_delta
        return x_pred

    def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
        cond = torch.randn([1, self.n_hidden, 10]).cpu()
        if init_noise is None:
            x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
        else:
            x = init_noise
        pndms = 100

        org_y_x = self.org_forward(cond, init_noise=x)

        device = cond.device
        n_frames = cond.shape[2]
        step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
        plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
        noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)

        ot = step_range[0]
        ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
        if export_denoise:
            torch.onnx.export(
                self.denoise_fn,
                (x.cpu(), ot_1.cpu(), cond.cpu()),
                f"{project_name}_denoise.onnx",
                input_names=["noise", "time", "condition"],
                output_names=["noise_pred"],
                dynamic_axes={
                    "noise": [3],
                    "condition": [2]
                },
                opset_version=16
            )

        for t in step_range:
            t_1 = torch.full((1,), t, device=device, dtype=torch.long)
            noise_pred = self.denoise_fn(x, t_1, cond)
            t_prev = t_1 - pndms
            t_prev = t_prev * (t_prev > 0)
            if plms_noise_stage == 0:
                if export_pred:
                    torch.onnx.export(
                        self.xp,
                        (x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
                        f"{project_name}_pred.onnx",
                        input_names=["noise", "noise_pred", "time", "time_prev"],
                        output_names=["noise_pred_o"],
                        dynamic_axes={
                            "noise": [3],
                            "noise_pred": [3]
                        },
                        opset_version=16
                    )

                x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
                noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
                noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)

            elif plms_noise_stage == 1:
                noise_pred_prime = predict_stage1(noise_pred, noise_list)

            elif plms_noise_stage == 2:
                noise_pred_prime = predict_stage2(noise_pred, noise_list)

            else:
                noise_pred_prime = predict_stage3(noise_pred, noise_list)

            noise_pred = noise_pred.unsqueeze(0)

            if plms_noise_stage < 3:
                noise_list = torch.cat((noise_list, noise_pred), dim=0)
                plms_noise_stage = plms_noise_stage + 1

            else:
                noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)

            x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
        if export_after:
            torch.onnx.export(
                self.ad,
                x.cpu(),
                f"{project_name}_after.onnx",
                input_names=["x"],
                output_names=["mel_out"],
                dynamic_axes={
                    "x": [3]
                },
                opset_version=16
            )
        x = self.ad(x)

        print((x == org_y_x).all())
        return x

    def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
        cond = condition
        x = init_noise

        device = cond.device
        n_frames = cond.shape[2]
        step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
        plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
        noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)

        ot = step_range[0]
        ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)

        for t in step_range:
            t_1 = torch.full((1,), t, device=device, dtype=torch.long)
            noise_pred = self.denoise_fn(x, t_1, cond)
            t_prev = t_1 - pndms
            t_prev = t_prev * (t_prev > 0)
            if plms_noise_stage == 0:
                x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
                noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
                noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)

            elif plms_noise_stage == 1:
                noise_pred_prime = predict_stage1(noise_pred, noise_list)

            elif plms_noise_stage == 2:
                noise_pred_prime = predict_stage2(noise_pred, noise_list)

            else:
                noise_pred_prime = predict_stage3(noise_pred, noise_list)

            noise_pred = noise_pred.unsqueeze(0)

            if plms_noise_stage < 3:
                noise_list = torch.cat((noise_list, noise_pred), dim=0)
                plms_noise_stage = plms_noise_stage + 1

            else:
                noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)

            x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
        x = self.ad(x)
        return x