|
import os |
|
import numpy as np |
|
import torch |
|
from torch import no_grad, LongTensor |
|
import argparse |
|
import commons |
|
from mel_processing import spectrogram_torch |
|
import utils |
|
from models import SynthesizerTrn |
|
import gradio as gr |
|
import librosa |
|
import webbrowser |
|
|
|
from text import text_to_sequence, _clean_text |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
language_marks = { |
|
"Japanese": "", |
|
"日本語": "[JA]", |
|
"简体中文": "[ZH]", |
|
"English": "[EN]", |
|
"Mix": "", |
|
} |
|
lang = ['日本語', '简体中文', 'English', 'Mix'] |
|
|
|
|
|
def get_text(text, hps, is_symbol): |
|
text_norm = text_to_sequence( |
|
text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = LongTensor(text_norm) |
|
return text_norm |
|
|
|
|
|
def create_tts_fn(model, hps, speaker_ids): |
|
def tts_fn(text, speaker, language, speed): |
|
if language is not None: |
|
text = language_marks[language] + text + language_marks[language] |
|
speaker_id = speaker_ids[speaker] |
|
stn_tst = get_text(text, hps, False) |
|
with no_grad(): |
|
x_tst = stn_tst.unsqueeze(0).to(device) |
|
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) |
|
sid = LongTensor([speaker_id]).to(device) |
|
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, |
|
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() |
|
del stn_tst, x_tst, x_tst_lengths, sid |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return tts_fn |
|
|
|
|
|
def create_vc_fn(model, hps, speaker_ids): |
|
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio): |
|
input_audio = record_audio if record_audio is not None else upload_audio |
|
if input_audio is None: |
|
return "You need to record or upload an audio", None |
|
sampling_rate, audio = input_audio |
|
original_speaker_id = speaker_ids[original_speaker] |
|
target_speaker_id = speaker_ids[target_speaker] |
|
|
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
if sampling_rate != hps.data.sampling_rate: |
|
audio = librosa.resample( |
|
audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate) |
|
with no_grad(): |
|
y = torch.FloatTensor(audio) |
|
y = y / max(-y.min(), y.max()) / 0.99 |
|
y = y.to(device) |
|
y = y.unsqueeze(0) |
|
spec = spectrogram_torch(y, hps.data.filter_length, |
|
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, |
|
center=False).to(device) |
|
spec_lengths = LongTensor([spec.size(-1)]).to(device) |
|
sid_src = LongTensor([original_speaker_id]).to(device) |
|
sid_tgt = LongTensor([target_speaker_id]).to(device) |
|
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][ |
|
0, 0].data.cpu().float().numpy() |
|
del y, spec, spec_lengths, sid_src, sid_tgt |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return vc_fn |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_dir", default="./models/G_9700.pth", |
|
help="directory to your fine-tuned model") |
|
parser.add_argument("--config_dir", default="./configs/modified_finetune_speaker.json", |
|
help="directory to your model config file") |
|
parser.add_argument("--share", action="store_true", default=False, |
|
help="make link public (used in colab)") |
|
|
|
args = parser.parse_args() |
|
hps = utils.get_hparams_from_file(args.config_dir) |
|
|
|
net_g = SynthesizerTrn( |
|
len(hps.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model).to(device) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint(args.model_dir, net_g, None) |
|
speaker_ids = hps.speakers |
|
speakers = list(hps.speakers.keys()) |
|
tts_fn = create_tts_fn(net_g, hps, speaker_ids) |
|
vc_fn = create_vc_fn(net_g, hps, speaker_ids) |
|
app = gr.Blocks() |
|
with app: |
|
with gr.Tab("Text-to-Speech"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
textbox = gr.TextArea(label="Text", |
|
placeholder="Type your sentence here", |
|
value="新たなキャラを解放できるようになったようですね。", elem_id=f"tts-input") |
|
|
|
char_dropdown = gr.Dropdown( |
|
choices=speakers, value=speakers[0], label='character') |
|
language_dropdown = gr.Dropdown( |
|
choices=lang, value=lang[0], label='language') |
|
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, |
|
label='速度 Speed') |
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Message") |
|
audio_output = gr.Audio( |
|
label="Output Audio", elem_id="tts-audio") |
|
btn = gr.Button("Generate!") |
|
btn.click(tts_fn, |
|
inputs=[textbox, char_dropdown, |
|
language_dropdown, duration_slider, ], |
|
outputs=[text_output, audio_output]) |
|
with gr.Tab("Voice Conversion"): |
|
gr.Markdown(""" |
|
录制或上传声音,并选择要转换的音色。 |
|
""") |
|
with gr.Column(): |
|
record_audio = gr.Audio( |
|
label="record your voice", source="microphone") |
|
upload_audio = gr.Audio( |
|
label="or upload audio here", source="upload") |
|
source_speaker = gr.Dropdown( |
|
choices=speakers, value=speakers[0], label="source speaker") |
|
target_speaker = gr.Dropdown( |
|
choices=speakers, value=speakers[0], label="target speaker") |
|
with gr.Column(): |
|
message_box = gr.Textbox(label="Message") |
|
converted_audio = gr.Audio(label='converted audio') |
|
btn = gr.Button("Convert!") |
|
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio], |
|
outputs=[message_box, converted_audio]) |
|
webbrowser.open("http://127.0.0.1:7899") |
|
app.queue(concurrency_count=1, api_open=True).launch(share=args.share) |
|
|