FrankZxShen commited on
Commit
0e18fe8
1 Parent(s): b9423e7
G_15100.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ad999e6eeaeb41b5ea44e6ddc453d36a15a77d7ceb12ed535769a622315cc2
3
+ size 159052621
app.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import os
3
+ import numpy as np
4
+ import torch
5
+ from torch import no_grad, LongTensor
6
+ import argparse
7
+ import commons
8
+ from mel_processing import spectrogram_torch
9
+ import utils
10
+ from models import SynthesizerTrn
11
+ import gradio as gr
12
+ import librosa
13
+ import webbrowser
14
+
15
+ from text import text_to_sequence, _clean_text
16
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
17
+ language_marks = {
18
+ "Japanese": "",
19
+ "日本語": "[JA]",
20
+ "简体中文": "[ZH]",
21
+ "English": "[EN]",
22
+ "Mix": "",
23
+ }
24
+
25
+
26
+ def get_text(text, hps, is_symbol):
27
+ text_norm = text_to_sequence(
28
+ text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
29
+ if hps.data.add_blank:
30
+ text_norm = commons.intersperse(text_norm, 0)
31
+ text_norm = LongTensor(text_norm)
32
+ return text_norm
33
+
34
+
35
+ def create_tts_fn(model, hps, speaker_ids):
36
+ def tts_fn(text, speaker, language, ns, nsw, speed, is_symbol):
37
+ if language is not None:
38
+ text = language_marks[language] + text + language_marks[language]
39
+ speaker_id = speaker_ids[speaker]
40
+ stn_tst = get_text(text, hps, is_symbol)
41
+ with no_grad():
42
+ x_tst = stn_tst.unsqueeze(0).to(device)
43
+ x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
44
+ sid = LongTensor([speaker_id]).to(device)
45
+ audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=ns, noise_scale_w=nsw,
46
+ length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
47
+ del stn_tst, x_tst, x_tst_lengths, sid
48
+ return "Success", (hps.data.sampling_rate, audio)
49
+
50
+ return tts_fn
51
+
52
+
53
+ def create_vc_fn(model, hps, speaker_ids):
54
+ def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
55
+ input_audio = record_audio if record_audio is not None else upload_audio
56
+ if input_audio is None:
57
+ return "You need to record or upload an audio", None
58
+ sampling_rate, audio = input_audio
59
+ original_speaker_id = speaker_ids[original_speaker]
60
+ target_speaker_id = speaker_ids[target_speaker]
61
+
62
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
63
+ if len(audio.shape) > 1:
64
+ audio = librosa.to_mono(audio.transpose(1, 0))
65
+ if sampling_rate != hps.data.sampling_rate:
66
+ audio = librosa.resample(
67
+ audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
68
+ with no_grad():
69
+ y = torch.FloatTensor(audio)
70
+ y = y / max(-y.min(), y.max()) / 0.99
71
+ y = y.to(device)
72
+ y = y.unsqueeze(0)
73
+ spec = spectrogram_torch(y, hps.data.filter_length,
74
+ hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
75
+ center=False).to(device)
76
+ spec_lengths = LongTensor([spec.size(-1)]).to(device)
77
+ sid_src = LongTensor([original_speaker_id]).to(device)
78
+ sid_tgt = LongTensor([target_speaker_id]).to(device)
79
+ audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
80
+ 0, 0].data.cpu().float().numpy()
81
+ del y, spec, spec_lengths, sid_src, sid_tgt
82
+ return "Success", (hps.data.sampling_rate, audio)
83
+
84
+ return vc_fn
85
+
86
+
87
+ def get_text(text, hps, is_symbol):
88
+ text_norm = text_to_sequence(
89
+ text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
90
+ if hps.data.add_blank:
91
+ text_norm = commons.intersperse(text_norm, 0)
92
+ text_norm = LongTensor(text_norm)
93
+ return text_norm
94
+
95
+
96
+ def create_to_symbol_fn(hps):
97
+ def to_symbol_fn(is_symbol_input, input_text, temp_text):
98
+ return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \
99
+ else (temp_text, temp_text)
100
+
101
+ return to_symbol_fn
102
+
103
+
104
+ models_info = [
105
+ {
106
+ "languages": ['日本語', '简体中文', 'English', 'Mix'],
107
+ "description": """
108
+ 这个模型包含Blue Archive的142名角色,能合成中日英三语。\n\n
109
+ 中英效果肯定没有日语好。\n\n
110
+ 若需要在同一个句子中混合多种语言,使用相应的语言标记包裹句子。 (日语用[JA], 中文用[ZH], 英文用[EN]),参考Examples中的示例。
111
+ """,
112
+ "model_path": "./G_15100.pth",
113
+ "config_path": "./config.json",
114
+ "examples": [['メイドのアリスに何でもお任せください。', '爱丽丝(女仆)', '日本語', 1, False],
115
+ ['ちゃーんといい子でお留守番してたよ。', '未花', '日本語', 1, False],
116
+ ['老师,欢迎。今天也由我来保护老师吧。', '阿露', '简体中文', 1, False],
117
+ ['Can you tell me how much the shirt is?',
118
+ '日富美', 'English', 1, False],
119
+ ['[EN]Excuse me?[EN][JA]お帰りなさい,お兄様![JA]', '优香(体操服)', 'Mix', 1, False]],
120
+ }
121
+ ]
122
+
123
+ models_tts = []
124
+ models_vc = []
125
+ if __name__ == "__main__":
126
+ parser = argparse.ArgumentParser()
127
+ parser.add_argument("--share", action="store_true",
128
+ default=False, help="share gradio app")
129
+ args = parser.parse_args()
130
+ categories = ["Blue Archive"]
131
+ others = {
132
+ "Princess Connect! Re:Dive": "https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-pcr",
133
+ "Umamusume": "https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-umamusume",
134
+ }
135
+ for info in models_info:
136
+ lang = info['languages']
137
+ examples = info['examples']
138
+ config_path = info['config_path']
139
+ model_path = info['model_path']
140
+ description = info['description']
141
+ hps = utils.get_hparams_from_file(config_path)
142
+
143
+ net_g = SynthesizerTrn(
144
+ len(hps.symbols),
145
+ hps.data.filter_length // 2 + 1,
146
+ hps.train.segment_size // hps.data.hop_length,
147
+ n_speakers=hps.data.n_speakers,
148
+ **hps.model).to(device)
149
+ _ = net_g.eval()
150
+
151
+ _ = utils.load_checkpoint(model_path, net_g, None)
152
+ speaker_ids = hps.speakers
153
+ speakers = list(hps.speakers.keys())
154
+ models_tts.append((description, speakers, lang, examples,
155
+ hps.symbols, create_tts_fn(net_g, hps, speaker_ids),
156
+ create_to_symbol_fn(hps)))
157
+ models_vc.append(
158
+ (description, speakers, create_vc_fn(net_g, hps, speaker_ids)))
159
+
160
+ app = gr.Blocks()
161
+ with app:
162
+ gr.Markdown(
163
+ "# <center> vits-fast-fineturning-models-ba\n"
164
+ "## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
165
+ "## <center> 请不要生成会对个人以及组织造成侵害的内容\n\n"
166
+ "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)\n\n"
167
+ "[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-pcr?duplicate=true)\n\n"
168
+ "[![Finetune your own model](https://badgen.net/badge/icon/github?icon=github&label=Finetune%20your%20own%20model)](https://github.com/Plachtaa/VITS-fast-fine-tuning)"
169
+ )
170
+ gr.Markdown("# TTS&Voice Conversion for Blue Archive\n\n"
171
+ )
172
+ with gr.Tabs():
173
+ for category in categories:
174
+ with gr.TabItem(category):
175
+ with gr.Tab("TTS"):
176
+ for i, (description, speakers, lang, example, symbols, tts_fn, to_symbol_fn) in enumerate(
177
+ models_tts):
178
+ gr.Markdown(description)
179
+ with gr.Row():
180
+ with gr.Column():
181
+ textbox = gr.TextArea(label="Text",
182
+ placeholder="Type your sentence here ",
183
+ value="よーし、私もがんばらないと!", elem_id=f"tts-input")
184
+ with gr.Accordion(label="Phoneme Input", open=False):
185
+ temp_text_var = gr.Variable()
186
+ symbol_input = gr.Checkbox(
187
+ value=False, label="Symbol input")
188
+ symbol_list = gr.Dataset(label="Symbol list", components=[textbox],
189
+ samples=[[x]
190
+ for x in symbols],
191
+ elem_id=f"symbol-list")
192
+ symbol_list_json = gr.Json(
193
+ value=symbols, visible=False)
194
+ symbol_input.change(to_symbol_fn,
195
+ [symbol_input, textbox,
196
+ temp_text_var],
197
+ [textbox, temp_text_var])
198
+ symbol_list.click(None, [symbol_list, symbol_list_json], textbox,
199
+ _js=f"""
200
+ (i, symbols, text) => {{
201
+ let root = document.querySelector("body > gradio-app");
202
+ if (root.shadowRoot != null)
203
+ root = root.shadowRoot;
204
+ let text_input = root.querySelector("#tts-input").querySelector("textarea");
205
+ let startPos = text_input.selectionStart;
206
+ let endPos = text_input.selectionEnd;
207
+ let oldTxt = text_input.value;
208
+ let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
209
+ text_input.value = result;
210
+ let x = window.scrollX, y = window.scrollY;
211
+ text_input.focus();
212
+ text_input.selectionStart = startPos + symbols[i].length;
213
+ text_input.selectionEnd = startPos + symbols[i].length;
214
+ text_input.blur();
215
+ window.scrollTo(x, y);
216
+ text = text_input.value;
217
+ return text;
218
+ }}""")
219
+ # select character
220
+ char_dropdown = gr.Dropdown(
221
+ choices=speakers, value=speakers[0], label='character')
222
+ language_dropdown = gr.Dropdown(
223
+ choices=lang, value=lang[0], label='language')
224
+ ns = gr.Slider(
225
+ label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
226
+ nsw = gr.Slider(label="noise_scale_w", minimum=0.1,
227
+ maximum=1.0, step=0.1, value=0.668, interactive=True)
228
+ duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
229
+ label='速度 Speed')
230
+ with gr.Column():
231
+ text_output = gr.Textbox(label="Message")
232
+ audio_output = gr.Audio(
233
+ label="Output Audio", elem_id="tts-audio")
234
+ btn = gr.Button("Generate!")
235
+ btn.click(tts_fn,
236
+ inputs=[textbox, char_dropdown, language_dropdown, ns, nsw, duration_slider,
237
+ symbol_input],
238
+ outputs=[text_output, audio_output])
239
+ gr.Examples(
240
+ examples=example,
241
+ inputs=[textbox, char_dropdown, language_dropdown,
242
+ duration_slider, symbol_input],
243
+ outputs=[text_output, audio_output],
244
+ fn=tts_fn
245
+ )
246
+ with gr.Tab("Voice Conversion"):
247
+ for i, (description, speakers, vc_fn) in enumerate(
248
+ models_vc):
249
+ gr.Markdown("""
250
+ 录制或上传声音,并选择要转换的音色。
251
+ """)
252
+ with gr.Column():
253
+ record_audio = gr.Audio(
254
+ label="record your voice", source="microphone")
255
+ upload_audio = gr.Audio(
256
+ label="or upload audio here", source="upload")
257
+ source_speaker = gr.Dropdown(
258
+ choices=speakers, value=speakers[0], label="source speaker")
259
+ target_speaker = gr.Dropdown(
260
+ choices=speakers, value=speakers[0], label="target speaker")
261
+ with gr.Column():
262
+ message_box = gr.Textbox(label="Message")
263
+ converted_audio = gr.Audio(
264
+ label='converted audio')
265
+ btn = gr.Button("Convert!")
266
+ btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
267
+ outputs=[message_box, converted_audio])
268
+ for category, link in others.items():
269
+ with gr.TabItem(category):
270
+ gr.Markdown(
271
+ f'''
272
+ <center>
273
+ <h2>Click to Go</h2>
274
+ <a href="{link}">
275
+ <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-xl-dark.svg"
276
+ </a>
277
+ </center>
278
+ '''
279
+ )
280
+
281
+ app.queue(concurrency_count=3).launch(show_api=False, share=args.share)
attentions.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+
14
+ class Encoder(nn.Module):
15
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
16
+ super().__init__()
17
+ self.hidden_channels = hidden_channels
18
+ self.filter_channels = filter_channels
19
+ self.n_heads = n_heads
20
+ self.n_layers = n_layers
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.window_size = window_size
24
+
25
+ self.drop = nn.Dropout(p_dropout)
26
+ self.attn_layers = nn.ModuleList()
27
+ self.norm_layers_1 = nn.ModuleList()
28
+ self.ffn_layers = nn.ModuleList()
29
+ self.norm_layers_2 = nn.ModuleList()
30
+ for i in range(self.n_layers):
31
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
32
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
33
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
34
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
35
+
36
+ def forward(self, x, x_mask):
37
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
38
+ x = x * x_mask
39
+ for i in range(self.n_layers):
40
+ y = self.attn_layers[i](x, x, attn_mask)
41
+ y = self.drop(y)
42
+ x = self.norm_layers_1[i](x + y)
43
+
44
+ y = self.ffn_layers[i](x, x_mask)
45
+ y = self.drop(y)
46
+ x = self.norm_layers_2[i](x + y)
47
+ x = x * x_mask
48
+ return x
49
+
50
+
51
+ class Decoder(nn.Module):
52
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
53
+ super().__init__()
54
+ self.hidden_channels = hidden_channels
55
+ self.filter_channels = filter_channels
56
+ self.n_heads = n_heads
57
+ self.n_layers = n_layers
58
+ self.kernel_size = kernel_size
59
+ self.p_dropout = p_dropout
60
+ self.proximal_bias = proximal_bias
61
+ self.proximal_init = proximal_init
62
+
63
+ self.drop = nn.Dropout(p_dropout)
64
+ self.self_attn_layers = nn.ModuleList()
65
+ self.norm_layers_0 = nn.ModuleList()
66
+ self.encdec_attn_layers = nn.ModuleList()
67
+ self.norm_layers_1 = nn.ModuleList()
68
+ self.ffn_layers = nn.ModuleList()
69
+ self.norm_layers_2 = nn.ModuleList()
70
+ for i in range(self.n_layers):
71
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
72
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
73
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
74
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
75
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
76
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
77
+
78
+ def forward(self, x, x_mask, h, h_mask):
79
+ """
80
+ x: decoder input
81
+ h: encoder output
82
+ """
83
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
84
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
85
+ x = x * x_mask
86
+ for i in range(self.n_layers):
87
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
88
+ y = self.drop(y)
89
+ x = self.norm_layers_0[i](x + y)
90
+
91
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
92
+ y = self.drop(y)
93
+ x = self.norm_layers_1[i](x + y)
94
+
95
+ y = self.ffn_layers[i](x, x_mask)
96
+ y = self.drop(y)
97
+ x = self.norm_layers_2[i](x + y)
98
+ x = x * x_mask
99
+ return x
100
+
101
+
102
+
103
+ class MultiHeadAttention(nn.Module):
104
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
105
+ super().__init__()
106
+ assert channels % n_heads == 0
107
+
108
+ self.channels = channels
109
+ self.out_channels = out_channels
110
+ self.n_heads = n_heads
111
+ self.p_dropout = p_dropout
112
+ self.window_size = window_size
113
+ self.heads_share = heads_share
114
+ self.block_length = block_length
115
+ self.proximal_bias = proximal_bias
116
+ self.proximal_init = proximal_init
117
+ self.attn = None
118
+
119
+ self.k_channels = channels // n_heads
120
+ self.conv_q = nn.Conv1d(channels, channels, 1)
121
+ self.conv_k = nn.Conv1d(channels, channels, 1)
122
+ self.conv_v = nn.Conv1d(channels, channels, 1)
123
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if window_size is not None:
127
+ n_heads_rel = 1 if heads_share else n_heads
128
+ rel_stddev = self.k_channels**-0.5
129
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
130
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
131
+
132
+ nn.init.xavier_uniform_(self.conv_q.weight)
133
+ nn.init.xavier_uniform_(self.conv_k.weight)
134
+ nn.init.xavier_uniform_(self.conv_v.weight)
135
+ if proximal_init:
136
+ with torch.no_grad():
137
+ self.conv_k.weight.copy_(self.conv_q.weight)
138
+ self.conv_k.bias.copy_(self.conv_q.bias)
139
+
140
+ def forward(self, x, c, attn_mask=None):
141
+ q = self.conv_q(x)
142
+ k = self.conv_k(c)
143
+ v = self.conv_v(c)
144
+
145
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
146
+
147
+ x = self.conv_o(x)
148
+ return x
149
+
150
+ def attention(self, query, key, value, mask=None):
151
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
152
+ b, d, t_s, t_t = (*key.size(), query.size(2))
153
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
154
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
155
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
156
+
157
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
158
+ if self.window_size is not None:
159
+ assert t_s == t_t, "Relative attention is only available for self-attention."
160
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
161
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
162
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
163
+ scores = scores + scores_local
164
+ if self.proximal_bias:
165
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
166
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
167
+ if mask is not None:
168
+ scores = scores.masked_fill(mask == 0, -1e4)
169
+ if self.block_length is not None:
170
+ assert t_s == t_t, "Local attention is only available for self-attention."
171
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
172
+ scores = scores.masked_fill(block_mask == 0, -1e4)
173
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
174
+ p_attn = self.drop(p_attn)
175
+ output = torch.matmul(p_attn, value)
176
+ if self.window_size is not None:
177
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
178
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
179
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
180
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
181
+ return output, p_attn
182
+
183
+ def _matmul_with_relative_values(self, x, y):
184
+ """
185
+ x: [b, h, l, m]
186
+ y: [h or 1, m, d]
187
+ ret: [b, h, l, d]
188
+ """
189
+ ret = torch.matmul(x, y.unsqueeze(0))
190
+ return ret
191
+
192
+ def _matmul_with_relative_keys(self, x, y):
193
+ """
194
+ x: [b, h, l, d]
195
+ y: [h or 1, m, d]
196
+ ret: [b, h, l, m]
197
+ """
198
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
199
+ return ret
200
+
201
+ def _get_relative_embeddings(self, relative_embeddings, length):
202
+ max_relative_position = 2 * self.window_size + 1
203
+ # Pad first before slice to avoid using cond ops.
204
+ pad_length = max(length - (self.window_size + 1), 0)
205
+ slice_start_position = max((self.window_size + 1) - length, 0)
206
+ slice_end_position = slice_start_position + 2 * length - 1
207
+ if pad_length > 0:
208
+ padded_relative_embeddings = F.pad(
209
+ relative_embeddings,
210
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
211
+ else:
212
+ padded_relative_embeddings = relative_embeddings
213
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
214
+ return used_relative_embeddings
215
+
216
+ def _relative_position_to_absolute_position(self, x):
217
+ """
218
+ x: [b, h, l, 2*l-1]
219
+ ret: [b, h, l, l]
220
+ """
221
+ batch, heads, length, _ = x.size()
222
+ # Concat columns of pad to shift from relative to absolute indexing.
223
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
224
+
225
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
226
+ x_flat = x.view([batch, heads, length * 2 * length])
227
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
228
+
229
+ # Reshape and slice out the padded elements.
230
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
231
+ return x_final
232
+
233
+ def _absolute_position_to_relative_position(self, x):
234
+ """
235
+ x: [b, h, l, l]
236
+ ret: [b, h, l, 2*l-1]
237
+ """
238
+ batch, heads, length, _ = x.size()
239
+ # padd along column
240
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
241
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
242
+ # add 0's in the beginning that will skew the elements after reshape
243
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
244
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
245
+ return x_final
246
+
247
+ def _attention_bias_proximal(self, length):
248
+ """Bias for self-attention to encourage attention to close positions.
249
+ Args:
250
+ length: an integer scalar.
251
+ Returns:
252
+ a Tensor with shape [1, 1, length, length]
253
+ """
254
+ r = torch.arange(length, dtype=torch.float32)
255
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
256
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
257
+
258
+
259
+ class FFN(nn.Module):
260
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
261
+ super().__init__()
262
+ self.in_channels = in_channels
263
+ self.out_channels = out_channels
264
+ self.filter_channels = filter_channels
265
+ self.kernel_size = kernel_size
266
+ self.p_dropout = p_dropout
267
+ self.activation = activation
268
+ self.causal = causal
269
+
270
+ if causal:
271
+ self.padding = self._causal_padding
272
+ else:
273
+ self.padding = self._same_padding
274
+
275
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
276
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
277
+ # self.conv_1 = layers.Conv1d(in_channels, filter_channels, kernel_size, r = 4, lora_alpha = 16, lora_dropout = 0.05)
278
+ # self.conv_2 = layers.Conv1d(filter_channels, out_channels, kernel_size, r = 4, lora_alpha = 16, lora_dropout = 0.05)
279
+ self.drop = nn.Dropout(p_dropout)
280
+
281
+ def forward(self, x, x_mask):
282
+ x = self.conv_1(self.padding(x * x_mask))
283
+ if self.activation == "gelu":
284
+ x = x * torch.sigmoid(1.702 * x)
285
+ else:
286
+ x = torch.relu(x)
287
+ x = self.drop(x)
288
+ x = self.conv_2(self.padding(x * x_mask))
289
+ return x * x_mask
290
+
291
+ def _causal_padding(self, x):
292
+ if self.kernel_size == 1:
293
+ return x
294
+ pad_l = self.kernel_size - 1
295
+ pad_r = 0
296
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
297
+ x = F.pad(x, commons.convert_pad_shape(padding))
298
+ return x
299
+
300
+ def _same_padding(self, x):
301
+ if self.kernel_size == 1:
302
+ return x
303
+ pad_l = (self.kernel_size - 1) // 2
304
+ pad_r = self.kernel_size // 2
305
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
306
+ x = F.pad(x, commons.convert_pad_shape(padding))
307
+ return x
commons.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ try:
54
+ ret[i] = x[i, :, idx_str:idx_end]
55
+ except RuntimeError:
56
+ print("?")
57
+ return ret
58
+
59
+
60
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
61
+ b, d, t = x.size()
62
+ if x_lengths is None:
63
+ x_lengths = t
64
+ ids_str_max = x_lengths - segment_size + 1
65
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
66
+ ret = slice_segments(x, ids_str, segment_size)
67
+ return ret, ids_str
68
+
69
+
70
+ def get_timing_signal_1d(
71
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
72
+ position = torch.arange(length, dtype=torch.float)
73
+ num_timescales = channels // 2
74
+ log_timescale_increment = (
75
+ math.log(float(max_timescale) / float(min_timescale)) /
76
+ (num_timescales - 1))
77
+ inv_timescales = min_timescale * torch.exp(
78
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
79
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
80
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
81
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
82
+ signal = signal.view(1, channels, length)
83
+ return signal
84
+
85
+
86
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
87
+ b, channels, length = x.size()
88
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
89
+ return x + signal.to(dtype=x.dtype, device=x.device)
90
+
91
+
92
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
93
+ b, channels, length = x.size()
94
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
95
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
96
+
97
+
98
+ def subsequent_mask(length):
99
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
100
+ return mask
101
+
102
+
103
+ @torch.jit.script
104
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
105
+ n_channels_int = n_channels[0]
106
+ in_act = input_a + input_b
107
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
108
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
109
+ acts = t_act * s_act
110
+ return acts
111
+
112
+
113
+ def convert_pad_shape(pad_shape):
114
+ l = pad_shape[::-1]
115
+ pad_shape = [item for sublist in l for item in sublist]
116
+ return pad_shape
117
+
118
+
119
+ def shift_1d(x):
120
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
121
+ return x
122
+
123
+
124
+ def sequence_mask(length, max_length=None):
125
+ if max_length is None:
126
+ max_length = length.max()
127
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
128
+ return x.unsqueeze(0) < length.unsqueeze(1)
129
+
130
+
131
+ def generate_path(duration, mask):
132
+ """
133
+ duration: [b, 1, t_x]
134
+ mask: [b, 1, t_y, t_x]
135
+ """
136
+ device = duration.device
137
+
138
+ b, _, t_y, t_x = mask.shape
139
+ cum_duration = torch.cumsum(duration, -1)
140
+
141
+ cum_duration_flat = cum_duration.view(b * t_x)
142
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
143
+ path = path.view(b, t_x, t_y)
144
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
145
+ path = path.unsqueeze(1).transpose(2,3) * mask
146
+ return path
147
+
148
+
149
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
150
+ if isinstance(parameters, torch.Tensor):
151
+ parameters = [parameters]
152
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
153
+ norm_type = float(norm_type)
154
+ if clip_value is not None:
155
+ clip_value = float(clip_value)
156
+
157
+ total_norm = 0
158
+ for p in parameters:
159
+ param_norm = p.grad.data.norm(norm_type)
160
+ total_norm += param_norm.item() ** norm_type
161
+ if clip_value is not None:
162
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
163
+ total_norm = total_norm ** (1. / norm_type)
164
+ return total_norm
config.json ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 10,
4
+ "eval_interval": 100,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 0.0002,
8
+ "betas": [
9
+ 0.8,
10
+ 0.99
11
+ ],
12
+ "eps": 1e-09,
13
+ "batch_size": 16,
14
+ "fp16_run": true,
15
+ "lr_decay": 0.999875,
16
+ "segment_size": 8192,
17
+ "init_lr_ratio": 1,
18
+ "warmup_epochs": 0,
19
+ "c_mel": 45,
20
+ "c_kl": 1.0
21
+ },
22
+ "data": {
23
+ "training_files": "final_annotation_train.txt",
24
+ "validation_files": "final_annotation_val.txt",
25
+ "text_cleaners": [
26
+ "cjke_cleaners2"
27
+ ],
28
+ "max_wav_value": 32768.0,
29
+ "sampling_rate": 22050,
30
+ "filter_length": 1024,
31
+ "hop_length": 256,
32
+ "win_length": 1024,
33
+ "n_mel_channels": 80,
34
+ "mel_fmin": 0.0,
35
+ "mel_fmax": null,
36
+ "add_blank": true,
37
+ "n_speakers": 142,
38
+ "cleaned_text": true
39
+ },
40
+ "model": {
41
+ "inter_channels": 192,
42
+ "hidden_channels": 192,
43
+ "filter_channels": 768,
44
+ "n_heads": 2,
45
+ "n_layers": 6,
46
+ "kernel_size": 3,
47
+ "p_dropout": 0.1,
48
+ "resblock": "1",
49
+ "resblock_kernel_sizes": [
50
+ 3,
51
+ 7,
52
+ 11
53
+ ],
54
+ "resblock_dilation_sizes": [
55
+ [
56
+ 1,
57
+ 3,
58
+ 5
59
+ ],
60
+ [
61
+ 1,
62
+ 3,
63
+ 5
64
+ ],
65
+ [
66
+ 1,
67
+ 3,
68
+ 5
69
+ ]
70
+ ],
71
+ "upsample_rates": [
72
+ 8,
73
+ 8,
74
+ 2,
75
+ 2
76
+ ],
77
+ "upsample_initial_channel": 512,
78
+ "upsample_kernel_sizes": [
79
+ 16,
80
+ 16,
81
+ 4,
82
+ 4
83
+ ],
84
+ "n_layers_q": 3,
85
+ "use_spectral_norm": false,
86
+ "gin_channels": 256
87
+ },
88
+ "symbols": [
89
+ "_",
90
+ ",",
91
+ ".",
92
+ "!",
93
+ "?",
94
+ "-",
95
+ "~",
96
+ "\u2026",
97
+ "N",
98
+ "Q",
99
+ "a",
100
+ "b",
101
+ "d",
102
+ "e",
103
+ "f",
104
+ "g",
105
+ "h",
106
+ "i",
107
+ "j",
108
+ "k",
109
+ "l",
110
+ "m",
111
+ "n",
112
+ "o",
113
+ "p",
114
+ "s",
115
+ "t",
116
+ "u",
117
+ "v",
118
+ "w",
119
+ "x",
120
+ "y",
121
+ "z",
122
+ "\u0251",
123
+ "\u00e6",
124
+ "\u0283",
125
+ "\u0291",
126
+ "\u00e7",
127
+ "\u026f",
128
+ "\u026a",
129
+ "\u0254",
130
+ "\u025b",
131
+ "\u0279",
132
+ "\u00f0",
133
+ "\u0259",
134
+ "\u026b",
135
+ "\u0265",
136
+ "\u0278",
137
+ "\u028a",
138
+ "\u027e",
139
+ "\u0292",
140
+ "\u03b8",
141
+ "\u03b2",
142
+ "\u014b",
143
+ "\u0266",
144
+ "\u207c",
145
+ "\u02b0",
146
+ "`",
147
+ "^",
148
+ "#",
149
+ "*",
150
+ "=",
151
+ "\u02c8",
152
+ "\u02cc",
153
+ "\u2192",
154
+ "\u2193",
155
+ "\u2191",
156
+ " "
157
+ ],
158
+ "speakers": {
159
+ "\u679c\u7a57": 0,
160
+ "\u82b9\u5a1c\uff08\u5723\u8bde\uff09": 1,
161
+ "\u7460\u7f8e": 2,
162
+ "\u9065\u9999": 3,
163
+ "\u771f\u767d\uff08\u6cf3\u88c5\uff09": 4,
164
+ "\u4e9a\u5b50": 5,
165
+ "\u963f\u9732\uff08\u6b63\u6708\uff09": 6,
166
+ "\u6893": 7,
167
+ "\u660e\u91cc": 8,
168
+ "\u5343\u5bfb": 9,
169
+ "\u6fd1\u540d": 10,
170
+ "\u6731\u97f3": 11,
171
+ "\u82b1\u51db": 12,
172
+ "\u840c\u7ed8": 13,
173
+ "\u82b1\u51db\uff08\u5154\u5973\u90ce\uff09": 14,
174
+ "\u5207\u91cc\u8bfa\uff08\u6e29\u6cc9\uff09": 15,
175
+ "\u83eb": 16,
176
+ "\u4e09\u68ee": 17,
177
+ "\u5c0f\u6625": 18,
178
+ "\u739b\u4e3d": 19,
179
+ "\u7766\u6708\uff08\u6b63\u6708\uff09": 20,
180
+ "\u6b4c\u539f": 21,
181
+ "\u963f\u9732": 22,
182
+ "\u77ac\uff08\u5e7c\u5973\uff09": 23,
183
+ "\u4f0a\u5415\u6ce2": 24,
184
+ "\u7766\u6708": 25,
185
+ "\u91ce\u5bab\uff08\u6cf3\u88c5\uff09": 26,
186
+ "\u9759\u5b50\uff08\u6cf3\u88c5\uff09": 27,
187
+ "\u4f73\u4ee3\u5b50": 28,
188
+ "\u73b2\u7eb1": 29,
189
+ "\u7f8e\u6e38": 30,
190
+ "\u7231\u4e3d\u4e1d\uff08\u5973\u4ec6\uff09": 31,
191
+ "\u9759\u5b50": 32,
192
+ "\u54b2": 33,
193
+ "\u6cc9": 34,
194
+ "\u7eff": 35,
195
+ "\u83b2\u89c1\uff08\u4f53\u64cd\u670d\uff09": 36,
196
+ "\u5207\u91cc\u8bfa": 37,
197
+ "\u6708\u548f": 38,
198
+ "\u767d\u5b50": 39,
199
+ "\u4e9a\u6d25\u5b50": 40,
200
+ "\u548c\u7eb1": 41,
201
+ "\u5357": 42,
202
+ "\u94c3\u7f8e": 43,
203
+ "\u4f18\u9999\uff08\u4f53\u64cd\u670d\uff09": 44,
204
+ "\u661f\u91ce": 45,
205
+ "\u590f": 46,
206
+ "\u6731\u97f3\uff08\u5154\u5973\u90ce\uff09": 47,
207
+ "\u767d\u5b50\uff08\u9a91\u884c\uff09": 48,
208
+ "\u82e5\u85fb\uff08\u6cf3\u88c5\uff09": 49,
209
+ "\u65e5\u5948": 50,
210
+ "\u739b\u4e3d\u5a1c": 51,
211
+ "\u9e64\u57ce": 52,
212
+ "\u67da\u5b50\uff08\u5973\u4ec6\uff09": 53,
213
+ "\u6843\u4e95": 54,
214
+ "\u548c\u9999\uff08\u6e29\u6cc9\uff09": 55,
215
+ "\u6e1a": 56,
216
+ "\u5343\u590f": 57,
217
+ "\u660e\u65e5\u5948": 58,
218
+ "\u4f0a\u7ec7": 59,
219
+ "\u65f6\u96e8": 60,
220
+ "\u67ab": 61,
221
+ "\u6b4c\u539f\uff08\u5e94\u63f4\u56e2\uff09": 62,
222
+ "\u82b9\u5a1c": 63,
223
+ "\u672a\u82b1": 64,
224
+ "\u6df3\u5b50\uff08\u6b63\u6708\uff09": 65,
225
+ "\u5eb7\u5a1c": 66,
226
+ "\u5439\u96ea": 67,
227
+ "\u65e5\u548c": 68,
228
+ "\u82b1\u5b50": 69,
229
+ "\u521d\u97f3\u672a\u6765\uff08\u8054\u52a8\uff09": 70,
230
+ "\u65e5\u5bcc\u7f8e\uff08\u6cf3\u88c5\uff09": 71,
231
+ "\u5343\u590f\uff08\u6e29\u6cc9\uff09": 72,
232
+ "\u7eb1\u7eeb": 73,
233
+ "\u7eeb\u97f3": 74,
234
+ "\u4f73\u4ee3\u5b50\uff08\u6b63\u6708\uff09": 75,
235
+ "\u67da\u5b50": 76,
236
+ "\u82b9\u9999\uff08\u6b63\u6708\uff09": 77,
237
+ "\u82e5\u85fb": 78,
238
+ "\u7eeb\u97f3\uff08\u6cf3\u88c5\uff09": 79,
239
+ "\u7f8e\u7962": 80,
240
+ "\u77ac": 81,
241
+ "\u5fc3\u5948": 82,
242
+ "\u5c3c\u7984\uff08\u5154\u5973\u90ce\uff09": 83,
243
+ "\u8bfa\u4e9a": 84,
244
+ "\u5c3c\u7984": 85,
245
+ "\u5df4": 86,
246
+ "\u660e\u65e5\u5948\uff08\u5154\u5973\u90ce\uff09": 87,
247
+ "\u82b9\u9999": 88,
248
+ "\u7f8e\u54b2": 89,
249
+ "\u597d\u7f8e": 90,
250
+ "\u4f0a\u7ec7\uff08\u6cf3\u88c5\uff09": 91,
251
+ "\u661f\u91ce\uff08\u6cf3\u88c5\uff09": 92,
252
+ "\u693f": 93,
253
+ "\u827e\u7c73": 94,
254
+ "\u7231\u4e3d\u4e1d": 95,
255
+ "\u771f\u5e0c": 96,
256
+ "\u65e5\u97a0": 97,
257
+ "\u6cc9\uff08\u6cf3\u88c5\uff09": 98,
258
+ "\u67ab\u9999\uff08\u6b63\u6708\uff09": 99,
259
+ "\u548c\u9999": 100,
260
+ "\u82b1\u7ed8": 101,
261
+ "\u5343\u4e16\uff08\u6cf3\u88c5\uff09": 102,
262
+ "\u739b\u4e3d\uff08\u4f53\u64cd\u670d\uff09": 103,
263
+ "\u5fd7\u7f8e\u5b50": 104,
264
+ "\u5c0f\u96ea": 105,
265
+ "\u54cd": 106,
266
+ "\u5bab\u5b50": 107,
267
+ "\u5c0f\u7389": 108,
268
+ "\u67ab\u9999": 109,
269
+ "\u91ce\u5bab": 110,
270
+ "\u65e5\u5bcc\u7f8e": 111,
271
+ "\u9e64\u57ce\uff08\u6cf3\u88c5\uff09": 112,
272
+ "\u54cd\uff08\u5e94\u63f4\u56e2\uff09": 113,
273
+ "\u67ef\u6258\u8389": 114,
274
+ "\u65e5\u5411": 115,
275
+ "\u6850\u4e43": 116,
276
+ "\u7eb1\u7eeb\uff08\u79c1\u670d\uff09": 117,
277
+ "\u5343\u4e16": 118,
278
+ "\u5fe7": 119,
279
+ "\u65e5\u5948\uff08\u6cf3\u88c5\uff09": 120,
280
+ "\u6cc9\u5948": 121,
281
+ "\u7231\u8389": 122,
282
+ "\u83b2\u89c1": 123,
283
+ "\u6a31\u5b50": 124,
284
+ "\u6df3\u5b50": 125,
285
+ "\u6893\uff08\u6cf3\u88c5\uff09": 126,
286
+ "\u9065\u9999\uff08\u6b63\u6708\uff09": 127,
287
+ "\u4f18\u9999": 128,
288
+ "\u771f\u767d": 129,
289
+ "\u83f2\u5a1c": 130,
290
+ "\u6674": 131,
291
+ "\u65f6\uff08\u5154\u5973\u90ce\uff09": 132,
292
+ "\u6ee1": 133,
293
+ "\u82b1\u7ed8\uff08\u5723\u8bde\uff09": 134,
294
+ "\u7eb1\u7ec7": 135,
295
+ "\u65f6": 136,
296
+ "\u60e0": 137,
297
+ "\u6674\u5948\uff08\u6b63\u6708\uff09": 138,
298
+ "\u6674\u5948": 139,
299
+ "\u6cc9\u5948\uff08\u6cf3\u88c5\uff09": 140,
300
+ "\u6731\u8389": 141
301
+ }
302
+ }
mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y.float(), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
models.py ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+ from commons import init_weights, get_padding
15
+
16
+
17
+ class StochasticDurationPredictor(nn.Module):
18
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
19
+ super().__init__()
20
+ filter_channels = in_channels # it needs to be removed from future version.
21
+ self.in_channels = in_channels
22
+ self.filter_channels = filter_channels
23
+ self.kernel_size = kernel_size
24
+ self.p_dropout = p_dropout
25
+ self.n_flows = n_flows
26
+ self.gin_channels = gin_channels
27
+
28
+ self.log_flow = modules.Log()
29
+ self.flows = nn.ModuleList()
30
+ self.flows.append(modules.ElementwiseAffine(2))
31
+ for i in range(n_flows):
32
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
33
+ self.flows.append(modules.Flip())
34
+
35
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
36
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
37
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
38
+ self.post_flows = nn.ModuleList()
39
+ self.post_flows.append(modules.ElementwiseAffine(2))
40
+ for i in range(4):
41
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
42
+ self.post_flows.append(modules.Flip())
43
+
44
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
45
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
46
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
47
+ if gin_channels != 0:
48
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
49
+
50
+ def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
51
+ x = torch.detach(x)
52
+ x = self.pre(x)
53
+ if g is not None:
54
+ g = torch.detach(g)
55
+ x = x + self.cond(g)
56
+ x = self.convs(x, x_mask)
57
+ x = self.proj(x) * x_mask
58
+
59
+ if not reverse:
60
+ flows = self.flows
61
+ assert w is not None
62
+
63
+ logdet_tot_q = 0
64
+ h_w = self.post_pre(w)
65
+ h_w = self.post_convs(h_w, x_mask)
66
+ h_w = self.post_proj(h_w) * x_mask
67
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
68
+ z_q = e_q
69
+ for flow in self.post_flows:
70
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
71
+ logdet_tot_q += logdet_q
72
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
73
+ u = torch.sigmoid(z_u) * x_mask
74
+ z0 = (w - u) * x_mask
75
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
76
+ logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
77
+
78
+ logdet_tot = 0
79
+ z0, logdet = self.log_flow(z0, x_mask)
80
+ logdet_tot += logdet
81
+ z = torch.cat([z0, z1], 1)
82
+ for flow in flows:
83
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
84
+ logdet_tot = logdet_tot + logdet
85
+ nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
86
+ return nll + logq # [b]
87
+ else:
88
+ flows = list(reversed(self.flows))
89
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
90
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
91
+ for flow in flows:
92
+ z = flow(z, x_mask, g=x, reverse=reverse)
93
+ z0, z1 = torch.split(z, [1, 1], 1)
94
+ logw = z0
95
+ return logw
96
+
97
+
98
+ class DurationPredictor(nn.Module):
99
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
100
+ super().__init__()
101
+
102
+ self.in_channels = in_channels
103
+ self.filter_channels = filter_channels
104
+ self.kernel_size = kernel_size
105
+ self.p_dropout = p_dropout
106
+ self.gin_channels = gin_channels
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
110
+ self.norm_1 = modules.LayerNorm(filter_channels)
111
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
112
+ self.norm_2 = modules.LayerNorm(filter_channels)
113
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
114
+
115
+ if gin_channels != 0:
116
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
117
+
118
+ def forward(self, x, x_mask, g=None):
119
+ x = torch.detach(x)
120
+ if g is not None:
121
+ g = torch.detach(g)
122
+ x = x + self.cond(g)
123
+ x = self.conv_1(x * x_mask)
124
+ x = torch.relu(x)
125
+ x = self.norm_1(x)
126
+ x = self.drop(x)
127
+ x = self.conv_2(x * x_mask)
128
+ x = torch.relu(x)
129
+ x = self.norm_2(x)
130
+ x = self.drop(x)
131
+ x = self.proj(x * x_mask)
132
+ return x * x_mask
133
+
134
+
135
+ class TextEncoder(nn.Module):
136
+ def __init__(self,
137
+ n_vocab,
138
+ out_channels,
139
+ hidden_channels,
140
+ filter_channels,
141
+ n_heads,
142
+ n_layers,
143
+ kernel_size,
144
+ p_dropout):
145
+ super().__init__()
146
+ self.n_vocab = n_vocab
147
+ self.out_channels = out_channels
148
+ self.hidden_channels = hidden_channels
149
+ self.filter_channels = filter_channels
150
+ self.n_heads = n_heads
151
+ self.n_layers = n_layers
152
+ self.kernel_size = kernel_size
153
+ self.p_dropout = p_dropout
154
+
155
+ self.emb = nn.Embedding(n_vocab, hidden_channels)
156
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
157
+
158
+ self.encoder = attentions.Encoder(
159
+ hidden_channels,
160
+ filter_channels,
161
+ n_heads,
162
+ n_layers,
163
+ kernel_size,
164
+ p_dropout)
165
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
166
+
167
+ def forward(self, x, x_lengths):
168
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
169
+ x = torch.transpose(x, 1, -1) # [b, h, t]
170
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
171
+
172
+ x = self.encoder(x * x_mask, x_mask)
173
+ stats = self.proj(x) * x_mask
174
+
175
+ m, logs = torch.split(stats, self.out_channels, dim=1)
176
+ return x, m, logs, x_mask
177
+
178
+
179
+ class TextEncoder_lora(nn.Module):
180
+ def __init__(self,
181
+ n_vocab,
182
+ out_channels,
183
+ hidden_channels,
184
+ filter_channels,
185
+ n_heads,
186
+ n_layers,
187
+ kernel_size,
188
+ p_dropout):
189
+ super().__init__()
190
+ self.n_vocab = n_vocab
191
+ self.out_channels = out_channels
192
+ self.hidden_channels = hidden_channels
193
+ self.filter_channels = filter_channels
194
+ self.n_heads = n_heads
195
+ self.n_layers = n_layers
196
+ self.kernel_size = kernel_size
197
+ self.p_dropout = p_dropout
198
+
199
+ self.emb = nn.Embedding(n_vocab, hidden_channels, r=4)
200
+ nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
201
+
202
+ self.encoder = attentions.Encoder_lora(
203
+ hidden_channels,
204
+ filter_channels,
205
+ n_heads,
206
+ n_layers,
207
+ kernel_size,
208
+ p_dropout)
209
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
210
+
211
+ def forward(self, x, x_lengths):
212
+ x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
213
+ x = torch.transpose(x, 1, -1) # [b, h, t]
214
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
215
+
216
+ x = self.encoder(x * x_mask, x_mask)
217
+ stats = self.proj(x) * x_mask
218
+
219
+ m, logs = torch.split(stats, self.out_channels, dim=1)
220
+ return x, m, logs, x_mask
221
+
222
+ class ResidualCouplingBlock(nn.Module):
223
+ def __init__(self,
224
+ channels,
225
+ hidden_channels,
226
+ kernel_size,
227
+ dilation_rate,
228
+ n_layers,
229
+ n_flows=4,
230
+ gin_channels=0):
231
+ super().__init__()
232
+ self.channels = channels
233
+ self.hidden_channels = hidden_channels
234
+ self.kernel_size = kernel_size
235
+ self.dilation_rate = dilation_rate
236
+ self.n_layers = n_layers
237
+ self.n_flows = n_flows
238
+ self.gin_channels = gin_channels
239
+
240
+ self.flows = nn.ModuleList()
241
+ for i in range(n_flows):
242
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
243
+ self.flows.append(modules.Flip())
244
+
245
+ def forward(self, x, x_mask, g=None, reverse=False):
246
+ if not reverse:
247
+ for flow in self.flows:
248
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
249
+ else:
250
+ for flow in reversed(self.flows):
251
+ x = flow(x, x_mask, g=g, reverse=reverse)
252
+ return x
253
+
254
+
255
+ class PosteriorEncoder(nn.Module):
256
+ def __init__(self,
257
+ in_channels,
258
+ out_channels,
259
+ hidden_channels,
260
+ kernel_size,
261
+ dilation_rate,
262
+ n_layers,
263
+ gin_channels=0):
264
+ super().__init__()
265
+ self.in_channels = in_channels
266
+ self.out_channels = out_channels
267
+ self.hidden_channels = hidden_channels
268
+ self.kernel_size = kernel_size
269
+ self.dilation_rate = dilation_rate
270
+ self.n_layers = n_layers
271
+ self.gin_channels = gin_channels
272
+
273
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
274
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
275
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
276
+
277
+ def forward(self, x, x_lengths, g=None):
278
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
279
+ x = self.pre(x) * x_mask
280
+ x = self.enc(x, x_mask, g=g)
281
+ stats = self.proj(x) * x_mask
282
+ m, logs = torch.split(stats, self.out_channels, dim=1)
283
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
284
+ return z, m, logs, x_mask
285
+
286
+
287
+ class Generator(torch.nn.Module):
288
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
289
+ super(Generator, self).__init__()
290
+ self.num_kernels = len(resblock_kernel_sizes)
291
+ self.num_upsamples = len(upsample_rates)
292
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
293
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
294
+
295
+ self.ups = nn.ModuleList()
296
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
297
+ self.ups.append(weight_norm(
298
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
299
+ k, u, padding=(k-u)//2)))
300
+
301
+ self.resblocks = nn.ModuleList()
302
+ for i in range(len(self.ups)):
303
+ ch = upsample_initial_channel//(2**(i+1))
304
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
305
+ self.resblocks.append(resblock(ch, k, d))
306
+
307
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
308
+ self.ups.apply(init_weights)
309
+
310
+ if gin_channels != 0:
311
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
312
+
313
+ def forward(self, x, g=None):
314
+ x = self.conv_pre(x)
315
+ if g is not None:
316
+ x = x + self.cond(g)
317
+
318
+ for i in range(self.num_upsamples):
319
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
320
+ x = self.ups[i](x)
321
+ xs = None
322
+ for j in range(self.num_kernels):
323
+ if xs is None:
324
+ xs = self.resblocks[i*self.num_kernels+j](x)
325
+ else:
326
+ xs += self.resblocks[i*self.num_kernels+j](x)
327
+ x = xs / self.num_kernels
328
+ x = F.leaky_relu(x)
329
+ x = self.conv_post(x)
330
+ x = torch.tanh(x)
331
+
332
+ return x
333
+
334
+ def remove_weight_norm(self):
335
+ print('Removing weight norm...')
336
+ for l in self.ups:
337
+ remove_weight_norm(l)
338
+ for l in self.resblocks:
339
+ l.remove_weight_norm()
340
+
341
+
342
+ class DiscriminatorP(torch.nn.Module):
343
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
344
+ super(DiscriminatorP, self).__init__()
345
+ self.period = period
346
+ self.use_spectral_norm = use_spectral_norm
347
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
348
+ self.convs = nn.ModuleList([
349
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
350
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
351
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
352
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
353
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
354
+ ])
355
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
356
+
357
+ def forward(self, x):
358
+ fmap = []
359
+
360
+ # 1d to 2d
361
+ b, c, t = x.shape
362
+ if t % self.period != 0: # pad first
363
+ n_pad = self.period - (t % self.period)
364
+ x = F.pad(x, (0, n_pad), "reflect")
365
+ t = t + n_pad
366
+ x = x.view(b, c, t // self.period, self.period)
367
+
368
+ for l in self.convs:
369
+ x = l(x)
370
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
371
+ fmap.append(x)
372
+ x = self.conv_post(x)
373
+ fmap.append(x)
374
+ x = torch.flatten(x, 1, -1)
375
+
376
+ return x, fmap
377
+
378
+
379
+ class DiscriminatorS(torch.nn.Module):
380
+ def __init__(self, use_spectral_norm=False):
381
+ super(DiscriminatorS, self).__init__()
382
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
383
+ self.convs = nn.ModuleList([
384
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
385
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
386
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
387
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
388
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
389
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
390
+ ])
391
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
392
+
393
+ def forward(self, x):
394
+ fmap = []
395
+
396
+ for l in self.convs:
397
+ x = l(x)
398
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
399
+ fmap.append(x)
400
+ x = self.conv_post(x)
401
+ fmap.append(x)
402
+ x = torch.flatten(x, 1, -1)
403
+
404
+ return x, fmap
405
+
406
+
407
+ class MultiPeriodDiscriminator(torch.nn.Module):
408
+ def __init__(self, use_spectral_norm=False):
409
+ super(MultiPeriodDiscriminator, self).__init__()
410
+ periods = [2,3,5,7,11]
411
+
412
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
413
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
414
+ self.discriminators = nn.ModuleList(discs)
415
+
416
+ def forward(self, y, y_hat):
417
+ y_d_rs = []
418
+ y_d_gs = []
419
+ fmap_rs = []
420
+ fmap_gs = []
421
+ for i, d in enumerate(self.discriminators):
422
+ y_d_r, fmap_r = d(y)
423
+ y_d_g, fmap_g = d(y_hat)
424
+ y_d_rs.append(y_d_r)
425
+ y_d_gs.append(y_d_g)
426
+ fmap_rs.append(fmap_r)
427
+ fmap_gs.append(fmap_g)
428
+
429
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
430
+
431
+
432
+
433
+ class SynthesizerTrn(nn.Module):
434
+ """
435
+ Synthesizer for Training
436
+ """
437
+
438
+ def __init__(self,
439
+ n_vocab,
440
+ spec_channels,
441
+ segment_size,
442
+ inter_channels,
443
+ hidden_channels,
444
+ filter_channels,
445
+ n_heads,
446
+ n_layers,
447
+ kernel_size,
448
+ p_dropout,
449
+ resblock,
450
+ resblock_kernel_sizes,
451
+ resblock_dilation_sizes,
452
+ upsample_rates,
453
+ upsample_initial_channel,
454
+ upsample_kernel_sizes,
455
+ n_speakers=0,
456
+ gin_channels=0,
457
+ use_sdp=True,
458
+ **kwargs):
459
+
460
+ super().__init__()
461
+ self.n_vocab = n_vocab
462
+ self.spec_channels = spec_channels
463
+ self.inter_channels = inter_channels
464
+ self.hidden_channels = hidden_channels
465
+ self.filter_channels = filter_channels
466
+ self.n_heads = n_heads
467
+ self.n_layers = n_layers
468
+ self.kernel_size = kernel_size
469
+ self.p_dropout = p_dropout
470
+ self.resblock = resblock
471
+ self.resblock_kernel_sizes = resblock_kernel_sizes
472
+ self.resblock_dilation_sizes = resblock_dilation_sizes
473
+ self.upsample_rates = upsample_rates
474
+ self.upsample_initial_channel = upsample_initial_channel
475
+ self.upsample_kernel_sizes = upsample_kernel_sizes
476
+ self.segment_size = segment_size
477
+ self.n_speakers = n_speakers
478
+ self.gin_channels = gin_channels
479
+
480
+ self.use_sdp = use_sdp
481
+
482
+ self.enc_p = TextEncoder(n_vocab,
483
+ inter_channels,
484
+ hidden_channels,
485
+ filter_channels,
486
+ n_heads,
487
+ n_layers,
488
+ kernel_size,
489
+ p_dropout)
490
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
491
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
492
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
493
+
494
+ if use_sdp:
495
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
496
+ else:
497
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
498
+
499
+ if n_speakers >= 1:
500
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
501
+
502
+ def forward(self, x, x_lengths, y, y_lengths, sid=None):
503
+
504
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
505
+ if self.n_speakers > 0:
506
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
507
+ else:
508
+ g = None
509
+
510
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
511
+ z_p = self.flow(z, y_mask, g=g)
512
+
513
+ with torch.no_grad():
514
+ # negative cross-entropy
515
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
516
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
517
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
518
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
519
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
520
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
521
+
522
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
523
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
524
+
525
+ w = attn.sum(2)
526
+ if self.use_sdp:
527
+ l_length = self.dp(x, x_mask, w, g=g)
528
+ l_length = l_length / torch.sum(x_mask)
529
+ else:
530
+ logw_ = torch.log(w + 1e-6) * x_mask
531
+ logw = self.dp(x, x_mask, g=g)
532
+ l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
533
+
534
+ # expand prior
535
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
536
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
537
+
538
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
539
+ o = self.dec(z_slice, g=g)
540
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
541
+
542
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
543
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
544
+ if self.n_speakers > 0:
545
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
546
+ else:
547
+ g = None
548
+
549
+ if self.use_sdp:
550
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
551
+ else:
552
+ logw = self.dp(x, x_mask, g=g)
553
+ w = torch.exp(logw) * x_mask * length_scale
554
+ w_ceil = torch.ceil(w)
555
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
556
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
557
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
558
+ attn = commons.generate_path(w_ceil, attn_mask)
559
+
560
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
561
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
562
+
563
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
564
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
565
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g)
566
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
567
+
568
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
569
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
570
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
571
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
572
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
573
+ z_p = self.flow(z, y_mask, g=g_src)
574
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
575
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
576
+ return o_hat, y_mask, (z, z_p, z_hat)
577
+
578
+
579
+ class SynthesizerTrn_lora(nn.Module):
580
+ """
581
+ Synthesizer for Training
582
+ """
583
+
584
+ def __init__(self,
585
+ n_vocab,
586
+ spec_channels,
587
+ segment_size,
588
+ inter_channels,
589
+ hidden_channels,
590
+ filter_channels,
591
+ n_heads,
592
+ n_layers,
593
+ kernel_size,
594
+ p_dropout,
595
+ resblock,
596
+ resblock_kernel_sizes,
597
+ resblock_dilation_sizes,
598
+ upsample_rates,
599
+ upsample_initial_channel,
600
+ upsample_kernel_sizes,
601
+ n_speakers=0,
602
+ gin_channels=0,
603
+ use_sdp=True,
604
+ **kwargs):
605
+
606
+ super().__init__()
607
+ self.n_vocab = n_vocab
608
+ self.spec_channels = spec_channels
609
+ self.inter_channels = inter_channels
610
+ self.hidden_channels = hidden_channels
611
+ self.filter_channels = filter_channels
612
+ self.n_heads = n_heads
613
+ self.n_layers = n_layers
614
+ self.kernel_size = kernel_size
615
+ self.p_dropout = p_dropout
616
+ self.resblock = resblock
617
+ self.resblock_kernel_sizes = resblock_kernel_sizes
618
+ self.resblock_dilation_sizes = resblock_dilation_sizes
619
+ self.upsample_rates = upsample_rates
620
+ self.upsample_initial_channel = upsample_initial_channel
621
+ self.upsample_kernel_sizes = upsample_kernel_sizes
622
+ self.segment_size = segment_size
623
+ self.n_speakers = n_speakers
624
+ self.gin_channels = gin_channels
625
+
626
+ self.use_sdp = use_sdp
627
+
628
+ self.enc_p = TextEncoder_lora(n_vocab,
629
+ inter_channels,
630
+ hidden_channels,
631
+ filter_channels,
632
+ n_heads,
633
+ n_layers,
634
+ kernel_size,
635
+ p_dropout)
636
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
637
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
638
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
639
+
640
+ if use_sdp:
641
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
642
+ else:
643
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
644
+
645
+ if n_speakers >= 1:
646
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
647
+
648
+ def forward(self, x, x_lengths, y, y_lengths, sid=None):
649
+
650
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
651
+ if self.n_speakers > 0:
652
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
653
+ else:
654
+ g = None
655
+
656
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
657
+ z_p = self.flow(z, y_mask, g=g)
658
+
659
+ with torch.no_grad():
660
+ # negative cross-entropy
661
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
662
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
663
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
664
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
665
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
666
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
667
+
668
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
669
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
670
+
671
+ w = attn.sum(2)
672
+ if self.use_sdp:
673
+ l_length = self.dp(x, x_mask, w, g=g)
674
+ l_length = l_length / torch.sum(x_mask)
675
+ else:
676
+ logw_ = torch.log(w + 1e-6) * x_mask
677
+ logw = self.dp(x, x_mask, g=g)
678
+ l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
679
+
680
+ # expand prior
681
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
682
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
683
+
684
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
685
+ o = self.dec(z_slice, g=g)
686
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
687
+
688
+ def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
689
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
690
+ if self.n_speakers > 0:
691
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
692
+ else:
693
+ g = None
694
+
695
+ if self.use_sdp:
696
+ logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
697
+ else:
698
+ logw = self.dp(x, x_mask, g=g)
699
+ w = torch.exp(logw) * x_mask * length_scale
700
+ w_ceil = torch.ceil(w)
701
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
702
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
703
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
704
+ attn = commons.generate_path(w_ceil, attn_mask)
705
+
706
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
707
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
708
+
709
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
710
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
711
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g)
712
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
713
+
714
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
715
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
716
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
717
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
718
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
719
+ z_p = self.flow(z, y_mask, g=g_src)
720
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
721
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
722
+ return o_hat, y_mask, (z, z_p, z_hat)
modules.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
+
69
+
70
+ class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
344
+
345
+
346
+ class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
monotonic_align/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numpy import zeros, int32, float32
2
+ from torch import from_numpy
3
+
4
+ from .core import maximum_path_jit
5
+
6
+
7
+ def maximum_path(neg_cent, mask):
8
+ """ numba optimized version.
9
+ neg_cent: [b, t_t, t_s]
10
+ mask: [b, t_t, t_s]
11
+ """
12
+ device = neg_cent.device
13
+ dtype = neg_cent.dtype
14
+ neg_cent = neg_cent.data.cpu().numpy().astype(float32)
15
+ path = zeros(neg_cent.shape, dtype=int32)
16
+
17
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
18
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
19
+ maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
20
+ return from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/core.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numba
2
+
3
+
4
+ @numba.jit(numba.void(numba.int32[:, :, ::1], numba.float32[:, :, ::1], numba.int32[::1], numba.int32[::1]),
5
+ nopython=True, nogil=True)
6
+ def maximum_path_jit(paths, values, t_ys, t_xs):
7
+ b = paths.shape[0]
8
+ max_neg_val = -1e9
9
+ for i in range(int(b)):
10
+ path = paths[i]
11
+ value = values[i]
12
+ t_y = t_ys[i]
13
+ t_x = t_xs[i]
14
+
15
+ v_prev = v_cur = 0.0
16
+ index = t_x - 1
17
+
18
+ for y in range(t_y):
19
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
20
+ if x == y:
21
+ v_cur = max_neg_val
22
+ else:
23
+ v_cur = value[y - 1, x]
24
+ if x == 0:
25
+ if y == 0:
26
+ v_prev = 0.
27
+ else:
28
+ v_prev = max_neg_val
29
+ else:
30
+ v_prev = value[y - 1, x - 1]
31
+ value[y, x] += max(v_prev, v_cur)
32
+
33
+ for y in range(t_y - 1, -1, -1):
34
+ path[y, index] = 1
35
+ if index != 0 and (index == y or value[y - 1, index] < value[y - 1, index - 1]):
36
+ index = index - 1
requirements.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cython
2
+ librosa==0.9.2
3
+ numpy
4
+ scipy
5
+ tensorboard
6
+ torch==1.13.1
7
+ torchvision==0.14.1
8
+ torchaudio==0.13.1
9
+ unidecode
10
+ pyopenjtalk==0.1.3
11
+ jamo
12
+ pypinyin
13
+ jieba
14
+ protobuf
15
+ cn2an
16
+ inflect
17
+ eng_to_ipa
18
+ ko_pron
19
+ indic_transliteration==2.3.37
20
+ num_thai==0.0.5
21
+ opencc==1.1.1
22
+ demucs
23
+ openai-whisper
24
+ gradio
text/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2017 Keith Ito
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy
4
+ of this software and associated documentation files (the "Software"), to deal
5
+ in the Software without restriction, including without limitation the rights
6
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
+ copies of the Software, and to permit persons to whom the Software is
8
+ furnished to do so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in
11
+ all copies or substantial portions of the Software.
12
+
13
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
+ THE SOFTWARE.
text/__init__.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+ from text import cleaners
3
+ from text.symbols import symbols
4
+
5
+
6
+ # Mappings from symbol to numeric ID and vice versa:
7
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8
+ _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9
+
10
+
11
+ def text_to_sequence(text, symbols, cleaner_names):
12
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13
+ Args:
14
+ text: string to convert to a sequence
15
+ cleaner_names: names of the cleaner functions to run the text through
16
+ Returns:
17
+ List of integers corresponding to the symbols in the text
18
+ '''
19
+ sequence = []
20
+ symbol_to_id = {s: i for i, s in enumerate(symbols)}
21
+ clean_text = _clean_text(text, cleaner_names)
22
+ print(clean_text)
23
+ print(f" length:{len(clean_text)}")
24
+ for symbol in clean_text:
25
+ if symbol not in symbol_to_id.keys():
26
+ continue
27
+ symbol_id = symbol_to_id[symbol]
28
+ sequence += [symbol_id]
29
+ print(f" length:{len(sequence)}")
30
+ return sequence
31
+
32
+
33
+ def cleaned_text_to_sequence(cleaned_text, symbols):
34
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
35
+ Args:
36
+ text: string to convert to a sequence
37
+ Returns:
38
+ List of integers corresponding to the symbols in the text
39
+ '''
40
+ symbol_to_id = {s: i for i, s in enumerate(symbols)}
41
+ sequence = [symbol_to_id[symbol] for symbol in cleaned_text if symbol in symbol_to_id.keys()]
42
+ return sequence
43
+
44
+
45
+ def sequence_to_text(sequence):
46
+ '''Converts a sequence of IDs back to a string'''
47
+ result = ''
48
+ for symbol_id in sequence:
49
+ s = _id_to_symbol[symbol_id]
50
+ result += s
51
+ return result
52
+
53
+
54
+ def _clean_text(text, cleaner_names):
55
+ for name in cleaner_names:
56
+ cleaner = getattr(cleaners, name)
57
+ if not cleaner:
58
+ raise Exception('Unknown cleaner: %s' % name)
59
+ text = cleaner(text)
60
+ return text
text/cantonese.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import cn2an
3
+ import opencc
4
+
5
+
6
+ converter = opencc.OpenCC('jyutjyu')
7
+
8
+ # List of (Latin alphabet, ipa) pairs:
9
+ _latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
10
+ ('A', 'ei˥'),
11
+ ('B', 'biː˥'),
12
+ ('C', 'siː˥'),
13
+ ('D', 'tiː˥'),
14
+ ('E', 'iː˥'),
15
+ ('F', 'e˥fuː˨˩'),
16
+ ('G', 'tsiː˥'),
17
+ ('H', 'ɪk̚˥tsʰyː˨˩'),
18
+ ('I', 'ɐi˥'),
19
+ ('J', 'tsei˥'),
20
+ ('K', 'kʰei˥'),
21
+ ('L', 'e˥llou˨˩'),
22
+ ('M', 'ɛːm˥'),
23
+ ('N', 'ɛːn˥'),
24
+ ('O', 'ou˥'),
25
+ ('P', 'pʰiː˥'),
26
+ ('Q', 'kʰiːu˥'),
27
+ ('R', 'aː˥lou˨˩'),
28
+ ('S', 'ɛː˥siː˨˩'),
29
+ ('T', 'tʰiː˥'),
30
+ ('U', 'juː˥'),
31
+ ('V', 'wiː˥'),
32
+ ('W', 'tʊk̚˥piː˥juː˥'),
33
+ ('X', 'ɪk̚˥siː˨˩'),
34
+ ('Y', 'waːi˥'),
35
+ ('Z', 'iː˨sɛːt̚˥')
36
+ ]]
37
+
38
+
39
+ def number_to_cantonese(text):
40
+ return re.sub(r'\d+(?:\.?\d+)?', lambda x: cn2an.an2cn(x.group()), text)
41
+
42
+
43
+ def latin_to_ipa(text):
44
+ for regex, replacement in _latin_to_ipa:
45
+ text = re.sub(regex, replacement, text)
46
+ return text
47
+
48
+
49
+ def cantonese_to_ipa(text):
50
+ text = number_to_cantonese(text.upper())
51
+ text = converter.convert(text).replace('-','').replace('$',' ')
52
+ text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
53
+ text = re.sub(r'[、;:]', ',', text)
54
+ text = re.sub(r'\s*,\s*', ', ', text)
55
+ text = re.sub(r'\s*。\s*', '. ', text)
56
+ text = re.sub(r'\s*?\s*', '? ', text)
57
+ text = re.sub(r'\s*!\s*', '! ', text)
58
+ text = re.sub(r'\s*$', '', text)
59
+ return text
text/cleaners.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from text.japanese import japanese_to_romaji_with_accent, japanese_to_ipa, japanese_to_ipa2, japanese_to_ipa3
3
+ from text.korean import latin_to_hangul, number_to_hangul, divide_hangul, korean_to_lazy_ipa, korean_to_ipa
4
+ from text.mandarin import number_to_chinese, chinese_to_bopomofo, latin_to_bopomofo, chinese_to_romaji, chinese_to_lazy_ipa, chinese_to_ipa, chinese_to_ipa2
5
+ from text.sanskrit import devanagari_to_ipa
6
+ from text.english import english_to_lazy_ipa, english_to_ipa2, english_to_lazy_ipa2
7
+ from text.thai import num_to_thai, latin_to_thai
8
+ # from text.shanghainese import shanghainese_to_ipa
9
+ # from text.cantonese import cantonese_to_ipa
10
+ # from text.ngu_dialect import ngu_dialect_to_ipa
11
+
12
+
13
+ def japanese_cleaners(text):
14
+ text = japanese_to_romaji_with_accent(text)
15
+ text = re.sub(r'([A-Za-z])$', r'\1.', text)
16
+ return text
17
+
18
+
19
+ def japanese_cleaners2(text):
20
+ return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')
21
+
22
+
23
+ def korean_cleaners(text):
24
+ '''Pipeline for Korean text'''
25
+ text = latin_to_hangul(text)
26
+ text = number_to_hangul(text)
27
+ text = divide_hangul(text)
28
+ text = re.sub(r'([\u3131-\u3163])$', r'\1.', text)
29
+ return text
30
+
31
+
32
+ # def chinese_cleaners(text):
33
+ # '''Pipeline for Chinese text'''
34
+ # text = number_to_chinese(text)
35
+ # text = chinese_to_bopomofo(text)
36
+ # text = latin_to_bopomofo(text)
37
+ # text = re.sub(r'([ˉˊˇˋ˙])$', r'\1。', text)
38
+ # return text
39
+
40
+ def chinese_cleaners(text):
41
+ from pypinyin import Style, pinyin
42
+ text = text.replace("[ZH]", "")
43
+ phones = [phone[0] for phone in pinyin(text, style=Style.TONE3)]
44
+ return ' '.join(phones)
45
+
46
+
47
+ def zh_ja_mixture_cleaners(text):
48
+ text = re.sub(r'\[ZH\](.*?)\[ZH\]',
49
+ lambda x: chinese_to_romaji(x.group(1))+' ', text)
50
+ text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_romaji_with_accent(
51
+ x.group(1)).replace('ts', 'ʦ').replace('u', 'ɯ').replace('...', '…')+' ', text)
52
+ text = re.sub(r'\s+$', '', text)
53
+ text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
54
+ return text
55
+
56
+
57
+ def sanskrit_cleaners(text):
58
+ text = text.replace('॥', '।').replace('ॐ', 'ओम्')
59
+ text = re.sub(r'([^।])$', r'\1।', text)
60
+ return text
61
+
62
+
63
+ def cjks_cleaners(text):
64
+ text = re.sub(r'\[ZH\](.*?)\[ZH\]',
65
+ lambda x: chinese_to_lazy_ipa(x.group(1))+' ', text)
66
+ text = re.sub(r'\[JA\](.*?)\[JA\]',
67
+ lambda x: japanese_to_ipa(x.group(1))+' ', text)
68
+ text = re.sub(r'\[KO\](.*?)\[KO\]',
69
+ lambda x: korean_to_lazy_ipa(x.group(1))+' ', text)
70
+ text = re.sub(r'\[SA\](.*?)\[SA\]',
71
+ lambda x: devanagari_to_ipa(x.group(1))+' ', text)
72
+ text = re.sub(r'\[EN\](.*?)\[EN\]',
73
+ lambda x: english_to_lazy_ipa(x.group(1))+' ', text)
74
+ text = re.sub(r'\s+$', '', text)
75
+ text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
76
+ return text
77
+
78
+
79
+ def cjke_cleaners(text):
80
+ text = re.sub(r'\[ZH\](.*?)\[ZH\]', lambda x: chinese_to_lazy_ipa(x.group(1)).replace(
81
+ 'ʧ', 'tʃ').replace('ʦ', 'ts').replace('ɥan', 'ɥæn')+' ', text)
82
+ text = re.sub(r'\[JA\](.*?)\[JA\]', lambda x: japanese_to_ipa(x.group(1)).replace('ʧ', 'tʃ').replace(
83
+ 'ʦ', 'ts').replace('ɥan', 'ɥæn').replace('ʥ', 'dz')+' ', text)
84
+ text = re.sub(r'\[KO\](.*?)\[KO\]',
85
+ lambda x: korean_to_ipa(x.group(1))+' ', text)
86
+ text = re.sub(r'\[EN\](.*?)\[EN\]', lambda x: english_to_ipa2(x.group(1)).replace('ɑ', 'a').replace(
87
+ 'ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')+' ', text)
88
+ text = re.sub(r'\s+$', '', text)
89
+ text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
90
+ return text
91
+
92
+
93
+ def cjke_cleaners2(text):
94
+ text = re.sub(r'\[ZH\](.*?)\[ZH\]',
95
+ lambda x: chinese_to_ipa(x.group(1))+' ', text)
96
+ text = re.sub(r'\[JA\](.*?)\[JA\]',
97
+ lambda x: japanese_to_ipa2(x.group(1))+' ', text)
98
+ text = re.sub(r'\[KO\](.*?)\[KO\]',
99
+ lambda x: korean_to_ipa(x.group(1))+' ', text)
100
+ text = re.sub(r'\[EN\](.*?)\[EN\]',
101
+ lambda x: english_to_ipa2(x.group(1))+' ', text)
102
+ text = re.sub(r'\s+$', '', text)
103
+ text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
104
+ return text
105
+
106
+
107
+ def thai_cleaners(text):
108
+ text = num_to_thai(text)
109
+ text = latin_to_thai(text)
110
+ return text
111
+
112
+
113
+ # def shanghainese_cleaners(text):
114
+ # text = shanghainese_to_ipa(text)
115
+ # text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
116
+ # return text
117
+
118
+
119
+ # def chinese_dialect_cleaners(text):
120
+ # text = re.sub(r'\[ZH\](.*?)\[ZH\]',
121
+ # lambda x: chinese_to_ipa2(x.group(1))+' ', text)
122
+ # text = re.sub(r'\[JA\](.*?)\[JA\]',
123
+ # lambda x: japanese_to_ipa3(x.group(1)).replace('Q', 'ʔ')+' ', text)
124
+ # text = re.sub(r'\[SH\](.*?)\[SH\]', lambda x: shanghainese_to_ipa(x.group(1)).replace('1', '˥˧').replace('5',
125
+ # '˧˧˦').replace('6', '˩˩˧').replace('7', '˥').replace('8', '˩˨').replace('ᴀ', 'ɐ').replace('ᴇ', 'e')+' ', text)
126
+ # text = re.sub(r'\[GD\](.*?)\[GD\]',
127
+ # lambda x: cantonese_to_ipa(x.group(1))+' ', text)
128
+ # text = re.sub(r'\[EN\](.*?)\[EN\]',
129
+ # lambda x: english_to_lazy_ipa2(x.group(1))+' ', text)
130
+ # text = re.sub(r'\[([A-Z]{2})\](.*?)\[\1\]', lambda x: ngu_dialect_to_ipa(x.group(2), x.group(
131
+ # 1)).replace('ʣ', 'dz').replace('ʥ', 'dʑ').replace('ʦ', 'ts').replace('ʨ', 'tɕ')+' ', text)
132
+ # text = re.sub(r'\s+$', '', text)
133
+ # text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
134
+ # return text
text/english.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Cleaners are transformations that run over the input text at both training and eval time.
5
+
6
+ Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7
+ hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8
+ 1. "english_cleaners" for English text
9
+ 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10
+ the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11
+ 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12
+ the symbols in symbols.py to match your data).
13
+ '''
14
+
15
+
16
+ # Regular expression matching whitespace:
17
+
18
+
19
+ import re
20
+ import inflect
21
+ from unidecode import unidecode
22
+ import eng_to_ipa as ipa
23
+ _inflect = inflect.engine()
24
+ _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
25
+ _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
26
+ _pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
27
+ _dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
28
+ _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
29
+ _number_re = re.compile(r'[0-9]+')
30
+
31
+ # List of (regular expression, replacement) pairs for abbreviations:
32
+ _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
33
+ ('mrs', 'misess'),
34
+ ('mr', 'mister'),
35
+ ('dr', 'doctor'),
36
+ ('st', 'saint'),
37
+ ('co', 'company'),
38
+ ('jr', 'junior'),
39
+ ('maj', 'major'),
40
+ ('gen', 'general'),
41
+ ('drs', 'doctors'),
42
+ ('rev', 'reverend'),
43
+ ('lt', 'lieutenant'),
44
+ ('hon', 'honorable'),
45
+ ('sgt', 'sergeant'),
46
+ ('capt', 'captain'),
47
+ ('esq', 'esquire'),
48
+ ('ltd', 'limited'),
49
+ ('col', 'colonel'),
50
+ ('ft', 'fort'),
51
+ ]]
52
+
53
+
54
+ # List of (ipa, lazy ipa) pairs:
55
+ _lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
56
+ ('r', 'ɹ'),
57
+ ('æ', 'e'),
58
+ ('ɑ', 'a'),
59
+ ('ɔ', 'o'),
60
+ ('ð', 'z'),
61
+ ('θ', 's'),
62
+ ('ɛ', 'e'),
63
+ ('ɪ', 'i'),
64
+ ('ʊ', 'u'),
65
+ ('ʒ', 'ʥ'),
66
+ ('ʤ', 'ʥ'),
67
+ ('ˈ', '↓'),
68
+ ]]
69
+
70
+ # List of (ipa, lazy ipa2) pairs:
71
+ _lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
72
+ ('r', 'ɹ'),
73
+ ('ð', 'z'),
74
+ ('θ', 's'),
75
+ ('ʒ', 'ʑ'),
76
+ ('ʤ', 'dʑ'),
77
+ ('ˈ', '↓'),
78
+ ]]
79
+
80
+ # List of (ipa, ipa2) pairs
81
+ _ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
82
+ ('r', 'ɹ'),
83
+ ('ʤ', 'dʒ'),
84
+ ('ʧ', 'tʃ')
85
+ ]]
86
+
87
+
88
+ def expand_abbreviations(text):
89
+ for regex, replacement in _abbreviations:
90
+ text = re.sub(regex, replacement, text)
91
+ return text
92
+
93
+
94
+ def collapse_whitespace(text):
95
+ return re.sub(r'\s+', ' ', text)
96
+
97
+
98
+ def _remove_commas(m):
99
+ return m.group(1).replace(',', '')
100
+
101
+
102
+ def _expand_decimal_point(m):
103
+ return m.group(1).replace('.', ' point ')
104
+
105
+
106
+ def _expand_dollars(m):
107
+ match = m.group(1)
108
+ parts = match.split('.')
109
+ if len(parts) > 2:
110
+ return match + ' dollars' # Unexpected format
111
+ dollars = int(parts[0]) if parts[0] else 0
112
+ cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
113
+ if dollars and cents:
114
+ dollar_unit = 'dollar' if dollars == 1 else 'dollars'
115
+ cent_unit = 'cent' if cents == 1 else 'cents'
116
+ return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
117
+ elif dollars:
118
+ dollar_unit = 'dollar' if dollars == 1 else 'dollars'
119
+ return '%s %s' % (dollars, dollar_unit)
120
+ elif cents:
121
+ cent_unit = 'cent' if cents == 1 else 'cents'
122
+ return '%s %s' % (cents, cent_unit)
123
+ else:
124
+ return 'zero dollars'
125
+
126
+
127
+ def _expand_ordinal(m):
128
+ return _inflect.number_to_words(m.group(0))
129
+
130
+
131
+ def _expand_number(m):
132
+ num = int(m.group(0))
133
+ if num > 1000 and num < 3000:
134
+ if num == 2000:
135
+ return 'two thousand'
136
+ elif num > 2000 and num < 2010:
137
+ return 'two thousand ' + _inflect.number_to_words(num % 100)
138
+ elif num % 100 == 0:
139
+ return _inflect.number_to_words(num // 100) + ' hundred'
140
+ else:
141
+ return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
142
+ else:
143
+ return _inflect.number_to_words(num, andword='')
144
+
145
+
146
+ def normalize_numbers(text):
147
+ text = re.sub(_comma_number_re, _remove_commas, text)
148
+ text = re.sub(_pounds_re, r'\1 pounds', text)
149
+ text = re.sub(_dollars_re, _expand_dollars, text)
150
+ text = re.sub(_decimal_number_re, _expand_decimal_point, text)
151
+ text = re.sub(_ordinal_re, _expand_ordinal, text)
152
+ text = re.sub(_number_re, _expand_number, text)
153
+ return text
154
+
155
+
156
+ def mark_dark_l(text):
157
+ return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)
158
+
159
+
160
+ def english_to_ipa(text):
161
+ text = unidecode(text).lower()
162
+ text = expand_abbreviations(text)
163
+ text = normalize_numbers(text)
164
+ phonemes = ipa.convert(text)
165
+ phonemes = collapse_whitespace(phonemes)
166
+ return phonemes
167
+
168
+
169
+ def english_to_lazy_ipa(text):
170
+ text = english_to_ipa(text)
171
+ for regex, replacement in _lazy_ipa:
172
+ text = re.sub(regex, replacement, text)
173
+ return text
174
+
175
+
176
+ def english_to_ipa2(text):
177
+ text = english_to_ipa(text)
178
+ text = mark_dark_l(text)
179
+ for regex, replacement in _ipa_to_ipa2:
180
+ text = re.sub(regex, replacement, text)
181
+ return text.replace('...', '…')
182
+
183
+
184
+ def english_to_lazy_ipa2(text):
185
+ text = english_to_ipa(text)
186
+ for regex, replacement in _lazy_ipa2:
187
+ text = re.sub(regex, replacement, text)
188
+ return text
text/japanese.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from unidecode import unidecode
3
+ import pyopenjtalk
4
+
5
+
6
+ # Regular expression matching Japanese without punctuation marks:
7
+ _japanese_characters = re.compile(
8
+ r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
9
+
10
+ # Regular expression matching non-Japanese characters or punctuation marks:
11
+ _japanese_marks = re.compile(
12
+ r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')
13
+
14
+ # List of (symbol, Japanese) pairs for marks:
15
+ _symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
16
+ ('%', 'パーセント')
17
+ ]]
18
+
19
+ # List of (romaji, ipa) pairs for marks:
20
+ _romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
21
+ ('ts', 'ʦ'),
22
+ ('u', 'ɯ'),
23
+ ('j', 'ʥ'),
24
+ ('y', 'j'),
25
+ ('ni', 'n^i'),
26
+ ('nj', 'n^'),
27
+ ('hi', 'çi'),
28
+ ('hj', 'ç'),
29
+ ('f', 'ɸ'),
30
+ ('I', 'i*'),
31
+ ('U', 'ɯ*'),
32
+ ('r', 'ɾ')
33
+ ]]
34
+
35
+ # List of (romaji, ipa2) pairs for marks:
36
+ _romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
37
+ ('u', 'ɯ'),
38
+ ('ʧ', 'tʃ'),
39
+ ('j', 'dʑ'),
40
+ ('y', 'j'),
41
+ ('ni', 'n^i'),
42
+ ('nj', 'n^'),
43
+ ('hi', 'çi'),
44
+ ('hj', 'ç'),
45
+ ('f', 'ɸ'),
46
+ ('I', 'i*'),
47
+ ('U', 'ɯ*'),
48
+ ('r', 'ɾ')
49
+ ]]
50
+
51
+ # List of (consonant, sokuon) pairs:
52
+ _real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
53
+ (r'Q([↑↓]*[kg])', r'k#\1'),
54
+ (r'Q([↑↓]*[tdjʧ])', r't#\1'),
55
+ (r'Q([↑↓]*[sʃ])', r's\1'),
56
+ (r'Q([↑↓]*[pb])', r'p#\1')
57
+ ]]
58
+
59
+ # List of (consonant, hatsuon) pairs:
60
+ _real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
61
+ (r'N([↑↓]*[pbm])', r'm\1'),
62
+ (r'N([↑↓]*[ʧʥj])', r'n^\1'),
63
+ (r'N([↑↓]*[tdn])', r'n\1'),
64
+ (r'N([↑↓]*[kg])', r'ŋ\1')
65
+ ]]
66
+
67
+
68
+ def symbols_to_japanese(text):
69
+ for regex, replacement in _symbols_to_japanese:
70
+ text = re.sub(regex, replacement, text)
71
+ return text
72
+
73
+
74
+ def japanese_to_romaji_with_accent(text):
75
+ '''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
76
+ text = symbols_to_japanese(text)
77
+ sentences = re.split(_japanese_marks, text)
78
+ marks = re.findall(_japanese_marks, text)
79
+ text = ''
80
+ for i, sentence in enumerate(sentences):
81
+ if re.match(_japanese_characters, sentence):
82
+ if text != '':
83
+ text += ' '
84
+ labels = pyopenjtalk.extract_fullcontext(sentence)
85
+ for n, label in enumerate(labels):
86
+ phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
87
+ if phoneme not in ['sil', 'pau']:
88
+ text += phoneme.replace('ch', 'ʧ').replace('sh',
89
+ 'ʃ').replace('cl', 'Q')
90
+ else:
91
+ continue
92
+ # n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
93
+ a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
94
+ a2 = int(re.search(r"\+(\d+)\+", label).group(1))
95
+ a3 = int(re.search(r"\+(\d+)/", label).group(1))
96
+ if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
97
+ a2_next = -1
98
+ else:
99
+ a2_next = int(
100
+ re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
101
+ # Accent phrase boundary
102
+ if a3 == 1 and a2_next == 1:
103
+ text += ' '
104
+ # Falling
105
+ elif a1 == 0 and a2_next == a2 + 1:
106
+ text += '↓'
107
+ # Rising
108
+ elif a2 == 1 and a2_next == 2:
109
+ text += '↑'
110
+ if i < len(marks):
111
+ text += unidecode(marks[i]).replace(' ', '')
112
+ return text
113
+
114
+
115
+ def get_real_sokuon(text):
116
+ for regex, replacement in _real_sokuon:
117
+ text = re.sub(regex, replacement, text)
118
+ return text
119
+
120
+
121
+ def get_real_hatsuon(text):
122
+ for regex, replacement in _real_hatsuon:
123
+ text = re.sub(regex, replacement, text)
124
+ return text
125
+
126
+
127
+ def japanese_to_ipa(text):
128
+ text = japanese_to_romaji_with_accent(text).replace('...', '…')
129
+ text = re.sub(
130
+ r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
131
+ text = get_real_sokuon(text)
132
+ text = get_real_hatsuon(text)
133
+ for regex, replacement in _romaji_to_ipa:
134
+ text = re.sub(regex, replacement, text)
135
+ return text
136
+
137
+
138
+ def japanese_to_ipa2(text):
139
+ text = japanese_to_romaji_with_accent(text).replace('...', '…')
140
+ text = get_real_sokuon(text)
141
+ text = get_real_hatsuon(text)
142
+ for regex, replacement in _romaji_to_ipa2:
143
+ text = re.sub(regex, replacement, text)
144
+ return text
145
+
146
+
147
+ def japanese_to_ipa3(text):
148
+ text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
149
+ 'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
150
+ text = re.sub(
151
+ r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
152
+ text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text)
153
+ return text
text/korean.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from jamo import h2j, j2hcj
3
+ import ko_pron
4
+
5
+
6
+ # This is a list of Korean classifiers preceded by pure Korean numerals.
7
+ _korean_classifiers = '군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통'
8
+
9
+ # List of (hangul, hangul divided) pairs:
10
+ _hangul_divided = [(re.compile('%s' % x[0]), x[1]) for x in [
11
+ ('ㄳ', 'ㄱㅅ'),
12
+ ('ㄵ', 'ㄴㅈ'),
13
+ ('ㄶ', 'ㄴㅎ'),
14
+ ('ㄺ', 'ㄹㄱ'),
15
+ ('ㄻ', 'ㄹㅁ'),
16
+ ('ㄼ', 'ㄹㅂ'),
17
+ ('ㄽ', 'ㄹㅅ'),
18
+ ('ㄾ', 'ㄹㅌ'),
19
+ ('ㄿ', 'ㄹㅍ'),
20
+ ('ㅀ', 'ㄹㅎ'),
21
+ ('ㅄ', 'ㅂㅅ'),
22
+ ('ㅘ', 'ㅗㅏ'),
23
+ ('ㅙ', 'ㅗㅐ'),
24
+ ('ㅚ', 'ㅗㅣ'),
25
+ ('ㅝ', 'ㅜㅓ'),
26
+ ('ㅞ', 'ㅜㅔ'),
27
+ ('ㅟ', 'ㅜㅣ'),
28
+ ('ㅢ', 'ㅡㅣ'),
29
+ ('ㅑ', 'ㅣㅏ'),
30
+ ('ㅒ', 'ㅣㅐ'),
31
+ ('ㅕ', 'ㅣㅓ'),
32
+ ('ㅖ', 'ㅣㅔ'),
33
+ ('ㅛ', 'ㅣㅗ'),
34
+ ('ㅠ', 'ㅣㅜ')
35
+ ]]
36
+
37
+ # List of (Latin alphabet, hangul) pairs:
38
+ _latin_to_hangul = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
39
+ ('a', '에이'),
40
+ ('b', '비'),
41
+ ('c', '시'),
42
+ ('d', '디'),
43
+ ('e', '이'),
44
+ ('f', '에프'),
45
+ ('g', '지'),
46
+ ('h', '에이치'),
47
+ ('i', '아이'),
48
+ ('j', '제이'),
49
+ ('k', '케이'),
50
+ ('l', '엘'),
51
+ ('m', '엠'),
52
+ ('n', '엔'),
53
+ ('o', '오'),
54
+ ('p', '피'),
55
+ ('q', '큐'),
56
+ ('r', '아르'),
57
+ ('s', '에스'),
58
+ ('t', '티'),
59
+ ('u', '유'),
60
+ ('v', '브이'),
61
+ ('w', '더블유'),
62
+ ('x', '엑스'),
63
+ ('y', '와이'),
64
+ ('z', '제트')
65
+ ]]
66
+
67
+ # List of (ipa, lazy ipa) pairs:
68
+ _ipa_to_lazy_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
69
+ ('t͡ɕ','ʧ'),
70
+ ('d͡ʑ','ʥ'),
71
+ ('ɲ','n^'),
72
+ ('ɕ','ʃ'),
73
+ ('ʷ','w'),
74
+ ('ɭ','l`'),
75
+ ('ʎ','ɾ'),
76
+ ('ɣ','ŋ'),
77
+ ('ɰ','ɯ'),
78
+ ('ʝ','j'),
79
+ ('ʌ','ə'),
80
+ ('ɡ','g'),
81
+ ('\u031a','#'),
82
+ ('\u0348','='),
83
+ ('\u031e',''),
84
+ ('\u0320',''),
85
+ ('\u0339','')
86
+ ]]
87
+
88
+
89
+ def latin_to_hangul(text):
90
+ for regex, replacement in _latin_to_hangul:
91
+ text = re.sub(regex, replacement, text)
92
+ return text
93
+
94
+
95
+ def divide_hangul(text):
96
+ text = j2hcj(h2j(text))
97
+ for regex, replacement in _hangul_divided:
98
+ text = re.sub(regex, replacement, text)
99
+ return text
100
+
101
+
102
+ def hangul_number(num, sino=True):
103
+ '''Reference https://github.com/Kyubyong/g2pK'''
104
+ num = re.sub(',', '', num)
105
+
106
+ if num == '0':
107
+ return '영'
108
+ if not sino and num == '20':
109
+ return '스무'
110
+
111
+ digits = '123456789'
112
+ names = '일이삼사오육칠팔구'
113
+ digit2name = {d: n for d, n in zip(digits, names)}
114
+
115
+ modifiers = '한 두 세 네 다섯 여섯 일곱 여덟 아홉'
116
+ decimals = '열 스물 서른 마흔 쉰 예순 일흔 여든 아흔'
117
+ digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
118
+ digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
119
+
120
+ spelledout = []
121
+ for i, digit in enumerate(num):
122
+ i = len(num) - i - 1
123
+ if sino:
124
+ if i == 0:
125
+ name = digit2name.get(digit, '')
126
+ elif i == 1:
127
+ name = digit2name.get(digit, '') + '십'
128
+ name = name.replace('일십', '십')
129
+ else:
130
+ if i == 0:
131
+ name = digit2mod.get(digit, '')
132
+ elif i == 1:
133
+ name = digit2dec.get(digit, '')
134
+ if digit == '0':
135
+ if i % 4 == 0:
136
+ last_three = spelledout[-min(3, len(spelledout)):]
137
+ if ''.join(last_three) == '':
138
+ spelledout.append('')
139
+ continue
140
+ else:
141
+ spelledout.append('')
142
+ continue
143
+ if i == 2:
144
+ name = digit2name.get(digit, '') + '백'
145
+ name = name.replace('일백', '백')
146
+ elif i == 3:
147
+ name = digit2name.get(digit, '') + '천'
148
+ name = name.replace('일천', '천')
149
+ elif i == 4:
150
+ name = digit2name.get(digit, '') + '만'
151
+ name = name.replace('일만', '만')
152
+ elif i == 5:
153
+ name = digit2name.get(digit, '') + '십'
154
+ name = name.replace('일십', '십')
155
+ elif i == 6:
156
+ name = digit2name.get(digit, '') + '백'
157
+ name = name.replace('일백', '백')
158
+ elif i == 7:
159
+ name = digit2name.get(digit, '') + '천'
160
+ name = name.replace('일천', '천')
161
+ elif i == 8:
162
+ name = digit2name.get(digit, '') + '억'
163
+ elif i == 9:
164
+ name = digit2name.get(digit, '') + '십'
165
+ elif i == 10:
166
+ name = digit2name.get(digit, '') + '백'
167
+ elif i == 11:
168
+ name = digit2name.get(digit, '') + '천'
169
+ elif i == 12:
170
+ name = digit2name.get(digit, '') + '조'
171
+ elif i == 13:
172
+ name = digit2name.get(digit, '') + '십'
173
+ elif i == 14:
174
+ name = digit2name.get(digit, '') + '백'
175
+ elif i == 15:
176
+ name = digit2name.get(digit, '') + '천'
177
+ spelledout.append(name)
178
+ return ''.join(elem for elem in spelledout)
179
+
180
+
181
+ def number_to_hangul(text):
182
+ '''Reference https://github.com/Kyubyong/g2pK'''
183
+ tokens = set(re.findall(r'(\d[\d,]*)([\uac00-\ud71f]+)', text))
184
+ for token in tokens:
185
+ num, classifier = token
186
+ if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
187
+ spelledout = hangul_number(num, sino=False)
188
+ else:
189
+ spelledout = hangul_number(num, sino=True)
190
+ text = text.replace(f'{num}{classifier}', f'{spelledout}{classifier}')
191
+ # digit by digit for remaining digits
192
+ digits = '0123456789'
193
+ names = '영일이삼사오육칠팔구'
194
+ for d, n in zip(digits, names):
195
+ text = text.replace(d, n)
196
+ return text
197
+
198
+
199
+ def korean_to_lazy_ipa(text):
200
+ text = latin_to_hangul(text)
201
+ text = number_to_hangul(text)
202
+ text=re.sub('[\uac00-\ud7af]+',lambda x:ko_pron.romanise(x.group(0),'ipa').split('] ~ [')[0],text)
203
+ for regex, replacement in _ipa_to_lazy_ipa:
204
+ text = re.sub(regex, replacement, text)
205
+ return text
206
+
207
+
208
+ def korean_to_ipa(text):
209
+ text = korean_to_lazy_ipa(text)
210
+ return text.replace('ʧ','tʃ').replace('ʥ','dʑ')
text/mandarin.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import re
4
+ from pypinyin import lazy_pinyin, BOPOMOFO
5
+ import jieba
6
+ import cn2an
7
+ import logging
8
+
9
+
10
+ # List of (Latin alphabet, bopomofo) pairs:
11
+ _latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
12
+ ('a', 'ㄟˉ'),
13
+ ('b', 'ㄅㄧˋ'),
14
+ ('c', 'ㄙㄧˉ'),
15
+ ('d', 'ㄉㄧˋ'),
16
+ ('e', 'ㄧˋ'),
17
+ ('f', 'ㄝˊㄈㄨˋ'),
18
+ ('g', 'ㄐㄧˋ'),
19
+ ('h', 'ㄝˇㄑㄩˋ'),
20
+ ('i', 'ㄞˋ'),
21
+ ('j', 'ㄐㄟˋ'),
22
+ ('k', 'ㄎㄟˋ'),
23
+ ('l', 'ㄝˊㄛˋ'),
24
+ ('m', 'ㄝˊㄇㄨˋ'),
25
+ ('n', 'ㄣˉ'),
26
+ ('o', 'ㄡˉ'),
27
+ ('p', 'ㄆㄧˉ'),
28
+ ('q', 'ㄎㄧㄡˉ'),
29
+ ('r', 'ㄚˋ'),
30
+ ('s', 'ㄝˊㄙˋ'),
31
+ ('t', 'ㄊㄧˋ'),
32
+ ('u', 'ㄧㄡˉ'),
33
+ ('v', 'ㄨㄧˉ'),
34
+ ('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'),
35
+ ('x', 'ㄝˉㄎㄨˋㄙˋ'),
36
+ ('y', 'ㄨㄞˋ'),
37
+ ('z', 'ㄗㄟˋ')
38
+ ]]
39
+
40
+ # List of (bopomofo, romaji) pairs:
41
+ _bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [
42
+ ('ㄅㄛ', 'p⁼wo'),
43
+ ('ㄆㄛ', 'pʰwo'),
44
+ ('ㄇㄛ', 'mwo'),
45
+ ('ㄈㄛ', 'fwo'),
46
+ ('ㄅ', 'p⁼'),
47
+ ('ㄆ', 'pʰ'),
48
+ ('ㄇ', 'm'),
49
+ ('ㄈ', 'f'),
50
+ ('ㄉ', 't⁼'),
51
+ ('ㄊ', 'tʰ'),
52
+ ('ㄋ', 'n'),
53
+ ('ㄌ', 'l'),
54
+ ('ㄍ', 'k⁼'),
55
+ ('ㄎ', 'kʰ'),
56
+ ('ㄏ', 'h'),
57
+ ('ㄐ', 'ʧ⁼'),
58
+ ('ㄑ', 'ʧʰ'),
59
+ ('ㄒ', 'ʃ'),
60
+ ('ㄓ', 'ʦ`⁼'),
61
+ ('ㄔ', 'ʦ`ʰ'),
62
+ ('ㄕ', 's`'),
63
+ ('ㄖ', 'ɹ`'),
64
+ ('ㄗ', 'ʦ⁼'),
65
+ ('ㄘ', 'ʦʰ'),
66
+ ('ㄙ', 's'),
67
+ ('ㄚ', 'a'),
68
+ ('ㄛ', 'o'),
69
+ ('ㄜ', 'ə'),
70
+ ('ㄝ', 'e'),
71
+ ('ㄞ', 'ai'),
72
+ ('ㄟ', 'ei'),
73
+ ('ㄠ', 'au'),
74
+ ('ㄡ', 'ou'),
75
+ ('ㄧㄢ', 'yeNN'),
76
+ ('ㄢ', 'aNN'),
77
+ ('ㄧㄣ', 'iNN'),
78
+ ('ㄣ', 'əNN'),
79
+ ('ㄤ', 'aNg'),
80
+ ('ㄧㄥ', 'iNg'),
81
+ ('ㄨㄥ', 'uNg'),
82
+ ('ㄩㄥ', 'yuNg'),
83
+ ('ㄥ', 'əNg'),
84
+ ('ㄦ', 'əɻ'),
85
+ ('ㄧ', 'i'),
86
+ ('ㄨ', 'u'),
87
+ ('ㄩ', 'ɥ'),
88
+ ('ˉ', '→'),
89
+ ('ˊ', '↑'),
90
+ ('ˇ', '↓↑'),
91
+ ('ˋ', '↓'),
92
+ ('˙', ''),
93
+ (',', ','),
94
+ ('。', '.'),
95
+ ('!', '!'),
96
+ ('?', '?'),
97
+ ('—', '-')
98
+ ]]
99
+
100
+ # List of (romaji, ipa) pairs:
101
+ _romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
102
+ ('ʃy', 'ʃ'),
103
+ ('ʧʰy', 'ʧʰ'),
104
+ ('ʧ⁼y', 'ʧ⁼'),
105
+ ('NN', 'n'),
106
+ ('Ng', 'ŋ'),
107
+ ('y', 'j'),
108
+ ('h', 'x')
109
+ ]]
110
+
111
+ # List of (bopomofo, ipa) pairs:
112
+ _bopomofo_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
113
+ ('ㄅㄛ', 'p⁼wo'),
114
+ ('ㄆㄛ', 'pʰwo'),
115
+ ('ㄇㄛ', 'mwo'),
116
+ ('ㄈㄛ', 'fwo'),
117
+ ('ㄅ', 'p⁼'),
118
+ ('ㄆ', 'pʰ'),
119
+ ('ㄇ', 'm'),
120
+ ('ㄈ', 'f'),
121
+ ('ㄉ', 't⁼'),
122
+ ('ㄊ', 'tʰ'),
123
+ ('ㄋ', 'n'),
124
+ ('ㄌ', 'l'),
125
+ ('ㄍ', 'k⁼'),
126
+ ('ㄎ', 'kʰ'),
127
+ ('ㄏ', 'x'),
128
+ ('ㄐ', 'tʃ⁼'),
129
+ ('ㄑ', 'tʃʰ'),
130
+ ('ㄒ', 'ʃ'),
131
+ ('ㄓ', 'ts`⁼'),
132
+ ('ㄔ', 'ts`ʰ'),
133
+ ('ㄕ', 's`'),
134
+ ('ㄖ', 'ɹ`'),
135
+ ('ㄗ', 'ts⁼'),
136
+ ('ㄘ', 'tsʰ'),
137
+ ('ㄙ', 's'),
138
+ ('ㄚ', 'a'),
139
+ ('ㄛ', 'o'),
140
+ ('ㄜ', 'ə'),
141
+ ('ㄝ', 'ɛ'),
142
+ ('ㄞ', 'aɪ'),
143
+ ('ㄟ', 'eɪ'),
144
+ ('ㄠ', 'ɑʊ'),
145
+ ('ㄡ', 'oʊ'),
146
+ ('ㄧㄢ', 'jɛn'),
147
+ ('ㄩㄢ', 'ɥæn'),
148
+ ('ㄢ', 'an'),
149
+ ('ㄧㄣ', 'in'),
150
+ ('ㄩㄣ', 'ɥn'),
151
+ ('ㄣ', 'ən'),
152
+ ('ㄤ', 'ɑŋ'),
153
+ ('ㄧㄥ', 'iŋ'),
154
+ ('ㄨㄥ', 'ʊŋ'),
155
+ ('ㄩㄥ', 'jʊŋ'),
156
+ ('ㄥ', 'əŋ'),
157
+ ('ㄦ', 'əɻ'),
158
+ ('ㄧ', 'i'),
159
+ ('ㄨ', 'u'),
160
+ ('ㄩ', 'ɥ'),
161
+ ('ˉ', '→'),
162
+ ('ˊ', '↑'),
163
+ ('ˇ', '↓↑'),
164
+ ('ˋ', '↓'),
165
+ ('˙', ''),
166
+ (',', ','),
167
+ ('。', '.'),
168
+ ('!', '!'),
169
+ ('?', '?'),
170
+ ('—', '-')
171
+ ]]
172
+
173
+ # List of (bopomofo, ipa2) pairs:
174
+ _bopomofo_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
175
+ ('ㄅㄛ', 'pwo'),
176
+ ('ㄆㄛ', 'pʰwo'),
177
+ ('ㄇㄛ', 'mwo'),
178
+ ('ㄈㄛ', 'fwo'),
179
+ ('ㄅ', 'p'),
180
+ ('ㄆ', 'pʰ'),
181
+ ('ㄇ', 'm'),
182
+ ('ㄈ', 'f'),
183
+ ('ㄉ', 't'),
184
+ ('ㄊ', 'tʰ'),
185
+ ('ㄋ', 'n'),
186
+ ('ㄌ', 'l'),
187
+ ('ㄍ', 'k'),
188
+ ('ㄎ', 'kʰ'),
189
+ ('ㄏ', 'h'),
190
+ ('ㄐ', 'tɕ'),
191
+ ('ㄑ', 'tɕʰ'),
192
+ ('ㄒ', 'ɕ'),
193
+ ('ㄓ', 'tʂ'),
194
+ ('ㄔ', 'tʂʰ'),
195
+ ('ㄕ', 'ʂ'),
196
+ ('ㄖ', 'ɻ'),
197
+ ('ㄗ', 'ts'),
198
+ ('ㄘ', 'tsʰ'),
199
+ ('ㄙ', 's'),
200
+ ('ㄚ', 'a'),
201
+ ('ㄛ', 'o'),
202
+ ('ㄜ', 'ɤ'),
203
+ ('ㄝ', 'ɛ'),
204
+ ('ㄞ', 'aɪ'),
205
+ ('ㄟ', 'eɪ'),
206
+ ('ㄠ', 'ɑʊ'),
207
+ ('ㄡ', 'oʊ'),
208
+ ('ㄧㄢ', 'jɛn'),
209
+ ('ㄩㄢ', 'yæn'),
210
+ ('ㄢ', 'an'),
211
+ ('ㄧㄣ', 'in'),
212
+ ('ㄩㄣ', 'yn'),
213
+ ('ㄣ', 'ən'),
214
+ ('ㄤ', 'ɑŋ'),
215
+ ('ㄧㄥ', 'iŋ'),
216
+ ('ㄨㄥ', 'ʊŋ'),
217
+ ('ㄩㄥ', 'jʊŋ'),
218
+ ('ㄥ', 'ɤŋ'),
219
+ ('ㄦ', 'əɻ'),
220
+ ('ㄧ', 'i'),
221
+ ('ㄨ', 'u'),
222
+ ('ㄩ', 'y'),
223
+ ('ˉ', '˥'),
224
+ ('ˊ', '˧˥'),
225
+ ('ˇ', '˨˩˦'),
226
+ ('ˋ', '˥˩'),
227
+ ('˙', ''),
228
+ (',', ','),
229
+ ('。', '.'),
230
+ ('!', '!'),
231
+ ('?', '?'),
232
+ ('—', '-')
233
+ ]]
234
+
235
+
236
+ def number_to_chinese(text):
237
+ numbers = re.findall(r'\d+(?:\.?\d+)?', text)
238
+ for number in numbers:
239
+ text = text.replace(number, cn2an.an2cn(number), 1)
240
+ return text
241
+
242
+
243
+ def chinese_to_bopomofo(text):
244
+ text = text.replace('、', ',').replace(';', ',').replace(':', ',')
245
+ words = jieba.lcut(text, cut_all=False)
246
+ text = ''
247
+ for word in words:
248
+ bopomofos = lazy_pinyin(word, BOPOMOFO)
249
+ if not re.search('[\u4e00-\u9fff]', word):
250
+ text += word
251
+ continue
252
+ for i in range(len(bopomofos)):
253
+ bopomofos[i] = re.sub(r'([\u3105-\u3129])$', r'\1ˉ', bopomofos[i])
254
+ if text != '':
255
+ text += ' '
256
+ text += ''.join(bopomofos)
257
+ return text
258
+
259
+
260
+ def latin_to_bopomofo(text):
261
+ for regex, replacement in _latin_to_bopomofo:
262
+ text = re.sub(regex, replacement, text)
263
+ return text
264
+
265
+
266
+ def bopomofo_to_romaji(text):
267
+ for regex, replacement in _bopomofo_to_romaji:
268
+ text = re.sub(regex, replacement, text)
269
+ return text
270
+
271
+
272
+ def bopomofo_to_ipa(text):
273
+ for regex, replacement in _bopomofo_to_ipa:
274
+ text = re.sub(regex, replacement, text)
275
+ return text
276
+
277
+
278
+ def bopomofo_to_ipa2(text):
279
+ for regex, replacement in _bopomofo_to_ipa2:
280
+ text = re.sub(regex, replacement, text)
281
+ return text
282
+
283
+
284
+ def chinese_to_romaji(text):
285
+ text = number_to_chinese(text)
286
+ text = chinese_to_bopomofo(text)
287
+ text = latin_to_bopomofo(text)
288
+ text = bopomofo_to_romaji(text)
289
+ text = re.sub('i([aoe])', r'y\1', text)
290
+ text = re.sub('u([aoəe])', r'w\1', text)
291
+ text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
292
+ r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
293
+ text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
294
+ return text
295
+
296
+
297
+ def chinese_to_lazy_ipa(text):
298
+ text = chinese_to_romaji(text)
299
+ for regex, replacement in _romaji_to_ipa:
300
+ text = re.sub(regex, replacement, text)
301
+ return text
302
+
303
+
304
+ def chinese_to_ipa(text):
305
+ text = number_to_chinese(text)
306
+ text = chinese_to_bopomofo(text)
307
+ text = latin_to_bopomofo(text)
308
+ text = bopomofo_to_ipa(text)
309
+ text = re.sub('i([aoe])', r'j\1', text)
310
+ text = re.sub('u([aoəe])', r'w\1', text)
311
+ text = re.sub('([sɹ]`[⁼ʰ]?)([→↓↑ ]+|$)',
312
+ r'\1ɹ`\2', text).replace('ɻ', 'ɹ`')
313
+ text = re.sub('([s][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text)
314
+ return text
315
+
316
+
317
+ def chinese_to_ipa2(text):
318
+ text = number_to_chinese(text)
319
+ text = chinese_to_bopomofo(text)
320
+ text = latin_to_bopomofo(text)
321
+ text = bopomofo_to_ipa2(text)
322
+ text = re.sub(r'i([aoe])', r'j\1', text)
323
+ text = re.sub(r'u([aoəe])', r'w\1', text)
324
+ text = re.sub(r'([ʂɹ]ʰ?)([˩˨˧˦˥ ]+|$)', r'\1ʅ\2', text)
325
+ text = re.sub(r'(sʰ?)([˩˨˧˦˥ ]+|$)', r'\1ɿ\2', text)
326
+ return text
text/ngu_dialect.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import opencc
3
+
4
+
5
+ dialects = {'SZ': 'suzhou', 'WX': 'wuxi', 'CZ': 'changzhou', 'HZ': 'hangzhou',
6
+ 'SX': 'shaoxing', 'NB': 'ningbo', 'JJ': 'jingjiang', 'YX': 'yixing',
7
+ 'JD': 'jiading', 'ZR': 'zhenru', 'PH': 'pinghu', 'TX': 'tongxiang',
8
+ 'JS': 'jiashan', 'HN': 'xiashi', 'LP': 'linping', 'XS': 'xiaoshan',
9
+ 'FY': 'fuyang', 'RA': 'ruao', 'CX': 'cixi', 'SM': 'sanmen',
10
+ 'TT': 'tiantai', 'WZ': 'wenzhou', 'SC': 'suichang', 'YB': 'youbu'}
11
+
12
+ converters = {}
13
+
14
+ for dialect in dialects.values():
15
+ try:
16
+ converters[dialect] = opencc.OpenCC(dialect)
17
+ except:
18
+ pass
19
+
20
+
21
+ def ngu_dialect_to_ipa(text, dialect):
22
+ dialect = dialects[dialect]
23
+ text = converters[dialect].convert(text).replace('-','').replace('$',' ')
24
+ text = re.sub(r'[、;:]', ',', text)
25
+ text = re.sub(r'\s*,\s*', ', ', text)
26
+ text = re.sub(r'\s*。\s*', '. ', text)
27
+ text = re.sub(r'\s*?\s*', '? ', text)
28
+ text = re.sub(r'\s*!\s*', '! ', text)
29
+ text = re.sub(r'\s*$', '', text)
30
+ return text
text/sanskrit.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from indic_transliteration import sanscript
3
+
4
+
5
+ # List of (iast, ipa) pairs:
6
+ _iast_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
7
+ ('a', 'ə'),
8
+ ('ā', 'aː'),
9
+ ('ī', 'iː'),
10
+ ('ū', 'uː'),
11
+ ('ṛ', 'ɹ`'),
12
+ ('ṝ', 'ɹ`ː'),
13
+ ('ḷ', 'l`'),
14
+ ('ḹ', 'l`ː'),
15
+ ('e', 'eː'),
16
+ ('o', 'oː'),
17
+ ('k', 'k⁼'),
18
+ ('k⁼h', 'kʰ'),
19
+ ('g', 'g⁼'),
20
+ ('g⁼h', 'gʰ'),
21
+ ('ṅ', 'ŋ'),
22
+ ('c', 'ʧ⁼'),
23
+ ('ʧ⁼h', 'ʧʰ'),
24
+ ('j', 'ʥ⁼'),
25
+ ('ʥ⁼h', 'ʥʰ'),
26
+ ('ñ', 'n^'),
27
+ ('ṭ', 't`⁼'),
28
+ ('t`⁼h', 't`ʰ'),
29
+ ('ḍ', 'd`⁼'),
30
+ ('d`⁼h', 'd`ʰ'),
31
+ ('ṇ', 'n`'),
32
+ ('t', 't⁼'),
33
+ ('t⁼h', 'tʰ'),
34
+ ('d', 'd⁼'),
35
+ ('d⁼h', 'dʰ'),
36
+ ('p', 'p⁼'),
37
+ ('p⁼h', 'pʰ'),
38
+ ('b', 'b⁼'),
39
+ ('b⁼h', 'bʰ'),
40
+ ('y', 'j'),
41
+ ('ś', 'ʃ'),
42
+ ('ṣ', 's`'),
43
+ ('r', 'ɾ'),
44
+ ('l̤', 'l`'),
45
+ ('h', 'ɦ'),
46
+ ("'", ''),
47
+ ('~', '^'),
48
+ ('ṃ', '^')
49
+ ]]
50
+
51
+
52
+ def devanagari_to_ipa(text):
53
+ text = text.replace('ॐ', 'ओम्')
54
+ text = re.sub(r'\s*।\s*$', '.', text)
55
+ text = re.sub(r'\s*।\s*', ', ', text)
56
+ text = re.sub(r'\s*॥', '.', text)
57
+ text = sanscript.transliterate(text, sanscript.DEVANAGARI, sanscript.IAST)
58
+ for regex, replacement in _iast_to_ipa:
59
+ text = re.sub(regex, replacement, text)
60
+ text = re.sub('(.)[`ː]*ḥ', lambda x: x.group(0)
61
+ [:-1]+'h'+x.group(1)+'*', text)
62
+ return text
text/shanghainese.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import cn2an
3
+ import opencc
4
+
5
+
6
+ converter = opencc.OpenCC('zaonhe')
7
+
8
+ # List of (Latin alphabet, ipa) pairs:
9
+ _latin_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
10
+ ('A', 'ᴇ'),
11
+ ('B', 'bi'),
12
+ ('C', 'si'),
13
+ ('D', 'di'),
14
+ ('E', 'i'),
15
+ ('F', 'ᴇf'),
16
+ ('G', 'dʑi'),
17
+ ('H', 'ᴇtɕʰ'),
18
+ ('I', 'ᴀi'),
19
+ ('J', 'dʑᴇ'),
20
+ ('K', 'kʰᴇ'),
21
+ ('L', 'ᴇl'),
22
+ ('M', 'ᴇm'),
23
+ ('N', 'ᴇn'),
24
+ ('O', 'o'),
25
+ ('P', 'pʰi'),
26
+ ('Q', 'kʰiu'),
27
+ ('R', 'ᴀl'),
28
+ ('S', 'ᴇs'),
29
+ ('T', 'tʰi'),
30
+ ('U', 'ɦiu'),
31
+ ('V', 'vi'),
32
+ ('W', 'dᴀbɤliu'),
33
+ ('X', 'ᴇks'),
34
+ ('Y', 'uᴀi'),
35
+ ('Z', 'zᴇ')
36
+ ]]
37
+
38
+
39
+ def _number_to_shanghainese(num):
40
+ num = cn2an.an2cn(num).replace('一十','十').replace('二十', '廿').replace('二', '两')
41
+ return re.sub(r'((?:^|[^三四五六七八九])十|廿)两', r'\1二', num)
42
+
43
+
44
+ def number_to_shanghainese(text):
45
+ return re.sub(r'\d+(?:\.?\d+)?', lambda x: _number_to_shanghainese(x.group()), text)
46
+
47
+
48
+ def latin_to_ipa(text):
49
+ for regex, replacement in _latin_to_ipa:
50
+ text = re.sub(regex, replacement, text)
51
+ return text
52
+
53
+
54
+ def shanghainese_to_ipa(text):
55
+ text = number_to_shanghainese(text.upper())
56
+ text = converter.convert(text).replace('-','').replace('$',' ')
57
+ text = re.sub(r'[A-Z]', lambda x: latin_to_ipa(x.group())+' ', text)
58
+ text = re.sub(r'[、;:]', ',', text)
59
+ text = re.sub(r'\s*,\s*', ', ', text)
60
+ text = re.sub(r'\s*。\s*', '. ', text)
61
+ text = re.sub(r'\s*?\s*', '? ', text)
62
+ text = re.sub(r'\s*!\s*', '! ', text)
63
+ text = re.sub(r'\s*$', '', text)
64
+ return text
text/symbols.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ Defines the set of symbols used in text input to the model.
3
+ '''
4
+
5
+ # japanese_cleaners
6
+ # _pad = '_'
7
+ # _punctuation = ',.!?-'
8
+ # _letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧ↓↑ '
9
+
10
+
11
+ '''# japanese_cleaners2
12
+ _pad = '_'
13
+ _punctuation = ',.!?-~…'
14
+ _letters = 'AEINOQUabdefghijkmnoprstuvwyzʃʧʦ↓↑ '
15
+ '''
16
+
17
+
18
+ '''# korean_cleaners
19
+ _pad = '_'
20
+ _punctuation = ',.!?…~'
21
+ _letters = 'ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ '
22
+ '''
23
+
24
+ '''# chinese_cleaners
25
+ _pad = '_'
26
+ _punctuation = ',。!?—…'
27
+ _letters = 'ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎㄏㄐㄑㄒㄓㄔㄕㄖㄗㄘㄙㄚㄛㄜㄝㄞㄟㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩˉˊˇˋ˙ '
28
+ '''
29
+
30
+ # # zh_ja_mixture_cleaners
31
+ # _pad = '_'
32
+ # _punctuation = ',.!?-~…'
33
+ # _letters = 'AEINOQUabdefghijklmnoprstuvwyzʃʧʦɯɹəɥ⁼ʰ`→↓↑ '
34
+
35
+
36
+ '''# sanskrit_cleaners
37
+ _pad = '_'
38
+ _punctuation = '।'
39
+ _letters = 'ँंःअआइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलळवशषसहऽािीुूृॄेैोौ्ॠॢ '
40
+ '''
41
+
42
+ '''# cjks_cleaners
43
+ _pad = '_'
44
+ _punctuation = ',.!?-~…'
45
+ _letters = 'NQabdefghijklmnopstuvwxyzʃʧʥʦɯɹəɥçɸɾβŋɦː⁼ʰ`^#*=→↓↑ '
46
+ '''
47
+
48
+ '''# thai_cleaners
49
+ _pad = '_'
50
+ _punctuation = '.!? '
51
+ _letters = 'กขฃคฆงจฉชซฌญฎฏฐฑฒณดตถทธนบปผฝพฟภมยรฤลวศษสหฬอฮฯะัาำิีึืุูเแโใไๅๆ็่้๊๋์'
52
+ '''
53
+
54
+ # # cjke_cleaners2
55
+ _pad = '_'
56
+ _punctuation = ',.!?-~…'
57
+ _letters = 'NQabdefghijklmnopstuvwxyzɑæʃʑçɯɪɔɛɹðəɫɥɸʊɾʒθβŋɦ⁼ʰ`^#*=ˈˌ→↓↑ '
58
+
59
+
60
+ '''# shanghainese_cleaners
61
+ _pad = '_'
62
+ _punctuation = ',.!?…'
63
+ _letters = 'abdfghiklmnopstuvyzøŋȵɑɔɕəɤɦɪɿʑʔʰ̩̃ᴀᴇ15678 '
64
+ '''
65
+
66
+ '''# chinese_dialect_cleaners
67
+ _pad = '_'
68
+ _punctuation = ',.!?~…─'
69
+ _letters = '#Nabdefghijklmnoprstuvwxyzæçøŋœȵɐɑɒɓɔɕɗɘəɚɛɜɣɤɦɪɭɯɵɷɸɻɾɿʂʅʊʋʌʏʑʔʦʮʰʷˀː˥˦˧˨˩̥̩̃̚ᴀᴇ↑↓∅ⱼ '
70
+ '''
71
+
72
+ # Export all symbols:
73
+ symbols = [_pad] + list(_punctuation) + list(_letters)
74
+
75
+ # Special symbol ids
76
+ SPACE_ID = symbols.index(" ")
text/thai.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from num_thai.thainumbers import NumThai
3
+
4
+
5
+ num = NumThai()
6
+
7
+ # List of (Latin alphabet, Thai) pairs:
8
+ _latin_to_thai = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [
9
+ ('a', 'เอ'),
10
+ ('b','บี'),
11
+ ('c','ซี'),
12
+ ('d','ดี'),
13
+ ('e','อี'),
14
+ ('f','เอฟ'),
15
+ ('g','จี'),
16
+ ('h','เอช'),
17
+ ('i','ไอ'),
18
+ ('j','เจ'),
19
+ ('k','เค'),
20
+ ('l','แอล'),
21
+ ('m','เอ็ม'),
22
+ ('n','เอ็น'),
23
+ ('o','โอ'),
24
+ ('p','พี'),
25
+ ('q','คิว'),
26
+ ('r','แอร์'),
27
+ ('s','เอส'),
28
+ ('t','ที'),
29
+ ('u','ยู'),
30
+ ('v','วี'),
31
+ ('w','ดับเบิลยู'),
32
+ ('x','เอ็กซ์'),
33
+ ('y','วาย'),
34
+ ('z','ซี')
35
+ ]]
36
+
37
+
38
+ def num_to_thai(text):
39
+ return re.sub(r'(?:\d+(?:,?\d+)?)+(?:\.\d+(?:,?\d+)?)?', lambda x: ''.join(num.NumberToTextThai(float(x.group(0).replace(',', '')))), text)
40
+
41
+ def latin_to_thai(text):
42
+ for regex, replacement in _latin_to_thai:
43
+ text = re.sub(regex, replacement, text)
44
+ return text
transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import sys
4
+ import argparse
5
+ import logging
6
+ import json
7
+ import subprocess
8
+ import numpy as np
9
+ from scipy.io.wavfile import read
10
+ import torch
11
+ import regex as re
12
+
13
+ MATPLOTLIB_FLAG = False
14
+
15
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
16
+ logger = logging
17
+
18
+
19
+
20
+ zh_pattern = re.compile(r'[\u4e00-\u9fa5]')
21
+ en_pattern = re.compile(r'[a-zA-Z]')
22
+ jp_pattern = re.compile(r'[\u3040-\u30ff\u31f0-\u31ff]')
23
+ kr_pattern = re.compile(r'[\uac00-\ud7af\u1100-\u11ff\u3130-\u318f\ua960-\ua97f]')
24
+ num_pattern=re.compile(r'[0-9]')
25
+ comma=r"(?<=[.。!!??;;,,、::'\"‘“”’()()《》「」~——])" #向前匹配但固定长度
26
+ tags={'ZH':'[ZH]','EN':'[EN]','JP':'[JA]','KR':'[KR]'}
27
+
28
+ def tag_cjke(text):
29
+ '''为中英日韩加tag,中日正则分不开,故先分句分离中日再识别,以应对大部分情况'''
30
+ sentences = re.split(r"([.。!!??;;,,、::'\"‘“”’()()【】《》「」~——]+ *(?![0-9]))", text) #分句,排除小数点
31
+ sentences.append("")
32
+ sentences = ["".join(i) for i in zip(sentences[0::2],sentences[1::2])]
33
+ # print(sentences)
34
+ prev_lang=None
35
+ tagged_text = ""
36
+ for s in sentences:
37
+ #全为符号跳过
38
+ nu = re.sub(r'[\s\p{P}]+', '', s, flags=re.U).strip()
39
+ if len(nu)==0:
40
+ continue
41
+ s = re.sub(r'[()()《》「」【】‘“”’]+', '', s)
42
+ jp=re.findall(jp_pattern, s)
43
+ #本句含日语字符判断为日语
44
+ if len(jp)>0:
45
+ prev_lang,tagged_jke=tag_jke(s,prev_lang)
46
+ tagged_text +=tagged_jke
47
+ else:
48
+ prev_lang,tagged_cke=tag_cke(s,prev_lang)
49
+ tagged_text +=tagged_cke
50
+ return tagged_text
51
+
52
+ def tag_jke(text,prev_sentence=None):
53
+ '''为英日韩加tag'''
54
+ # 初始化标记变量
55
+ tagged_text = ""
56
+ prev_lang = None
57
+ tagged=0
58
+ # 遍历文本
59
+ for char in text:
60
+ # 判断当前字符属于哪种语言
61
+ if jp_pattern.match(char):
62
+ lang = "JP"
63
+ elif zh_pattern.match(char):
64
+ lang = "JP"
65
+ elif kr_pattern.match(char):
66
+ lang = "KR"
67
+ elif en_pattern.match(char):
68
+ lang = "EN"
69
+ # elif num_pattern.match(char):
70
+ # lang = prev_sentence
71
+ else:
72
+ lang = None
73
+ tagged_text += char
74
+ continue
75
+ # 如果当前语言与上一个语言不同,就添加标记
76
+ if lang != prev_lang:
77
+ tagged=1
78
+ if prev_lang==None: # 开头
79
+ tagged_text =tags[lang]+tagged_text
80
+ else:
81
+ tagged_text =tagged_text+tags[prev_lang]+tags[lang]
82
+
83
+ # 重置标记变量
84
+ prev_lang = lang
85
+
86
+ # 添加当前字符到标记文本中
87
+ tagged_text += char
88
+
89
+ # 在最后一个语言的结尾添加对应的标记
90
+ if prev_lang:
91
+ tagged_text += tags[prev_lang]
92
+ if not tagged:
93
+ prev_lang=prev_sentence
94
+ tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
95
+
96
+ return prev_lang,tagged_text
97
+
98
+ def tag_cke(text,prev_sentence=None):
99
+ '''为中英韩加tag'''
100
+ # 初始化标记变量
101
+ tagged_text = ""
102
+ prev_lang = None
103
+ # 是否全略过未标签
104
+ tagged=0
105
+
106
+ # 遍历文本
107
+ for char in text:
108
+ # 判断当前字符属于哪种语言
109
+ if zh_pattern.match(char):
110
+ lang = "ZH"
111
+ elif kr_pattern.match(char):
112
+ lang = "KR"
113
+ elif en_pattern.match(char):
114
+ lang = "EN"
115
+ # elif num_pattern.match(char):
116
+ # lang = prev_sentence
117
+ else:
118
+ # 略过
119
+ lang = None
120
+ tagged_text += char
121
+ continue
122
+
123
+ # 如果当前语言与上一个语言不同,添加标记
124
+ if lang != prev_lang:
125
+ tagged=1
126
+ if prev_lang==None: # 开头
127
+ tagged_text =tags[lang]+tagged_text
128
+ else:
129
+ tagged_text =tagged_text+tags[prev_lang]+tags[lang]
130
+
131
+ # 重置标记变量
132
+ prev_lang = lang
133
+
134
+ # 添加当前字符到标记文本中
135
+ tagged_text += char
136
+
137
+ # 在最后一个语言的结尾添加对应的标记
138
+ if prev_lang:
139
+ tagged_text += tags[prev_lang]
140
+ # 未标签则继承上一句标签
141
+ if tagged==0:
142
+ prev_lang=prev_sentence
143
+ tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang]
144
+ return prev_lang,tagged_text
145
+
146
+
147
+ def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False):
148
+ assert os.path.isfile(checkpoint_path)
149
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
150
+ iteration = checkpoint_dict['iteration']
151
+ learning_rate = checkpoint_dict['learning_rate']
152
+ if optimizer is not None:
153
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
154
+ saved_state_dict = checkpoint_dict['model']
155
+ if hasattr(model, 'module'):
156
+ state_dict = model.module.state_dict()
157
+ else:
158
+ state_dict = model.state_dict()
159
+ new_state_dict = {}
160
+ for k, v in state_dict.items():
161
+ try:
162
+ if k == 'emb_g.weight':
163
+ if drop_speaker_emb:
164
+ new_state_dict[k] = v
165
+ continue
166
+ v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k]
167
+ new_state_dict[k] = v
168
+ else:
169
+ new_state_dict[k] = saved_state_dict[k]
170
+ except:
171
+ logger.info("%s is not in the checkpoint" % k)
172
+ new_state_dict[k] = v
173
+ if hasattr(model, 'module'):
174
+ model.module.load_state_dict(new_state_dict)
175
+ else:
176
+ model.load_state_dict(new_state_dict)
177
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
178
+ checkpoint_path, iteration))
179
+ return model, optimizer, learning_rate, iteration
180
+
181
+
182
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
183
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
184
+ iteration, checkpoint_path))
185
+ if hasattr(model, 'module'):
186
+ state_dict = model.module.state_dict()
187
+ else:
188
+ state_dict = model.state_dict()
189
+ torch.save({'model': state_dict,
190
+ 'iteration': iteration,
191
+ 'optimizer': optimizer.state_dict() if optimizer is not None else None,
192
+ 'learning_rate': learning_rate}, checkpoint_path)
193
+
194
+
195
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
196
+ for k, v in scalars.items():
197
+ writer.add_scalar(k, v, global_step)
198
+ for k, v in histograms.items():
199
+ writer.add_histogram(k, v, global_step)
200
+ for k, v in images.items():
201
+ writer.add_image(k, v, global_step, dataformats='HWC')
202
+ for k, v in audios.items():
203
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
204
+
205
+
206
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
207
+ f_list = glob.glob(os.path.join(dir_path, regex))
208
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
209
+ x = f_list[-1]
210
+ print(x)
211
+ return x
212
+
213
+
214
+ def plot_spectrogram_to_numpy(spectrogram):
215
+ global MATPLOTLIB_FLAG
216
+ if not MATPLOTLIB_FLAG:
217
+ import matplotlib
218
+ matplotlib.use("Agg")
219
+ MATPLOTLIB_FLAG = True
220
+ mpl_logger = logging.getLogger('matplotlib')
221
+ mpl_logger.setLevel(logging.WARNING)
222
+ import matplotlib.pylab as plt
223
+ import numpy as np
224
+
225
+ fig, ax = plt.subplots(figsize=(10, 2))
226
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
227
+ interpolation='none')
228
+ plt.colorbar(im, ax=ax)
229
+ plt.xlabel("Frames")
230
+ plt.ylabel("Channels")
231
+ plt.tight_layout()
232
+
233
+ fig.canvas.draw()
234
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
235
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
236
+ plt.close()
237
+ return data
238
+
239
+
240
+ def plot_alignment_to_numpy(alignment, info=None):
241
+ global MATPLOTLIB_FLAG
242
+ if not MATPLOTLIB_FLAG:
243
+ import matplotlib
244
+ matplotlib.use("Agg")
245
+ MATPLOTLIB_FLAG = True
246
+ mpl_logger = logging.getLogger('matplotlib')
247
+ mpl_logger.setLevel(logging.WARNING)
248
+ import matplotlib.pylab as plt
249
+ import numpy as np
250
+
251
+ fig, ax = plt.subplots(figsize=(6, 4))
252
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
253
+ interpolation='none')
254
+ fig.colorbar(im, ax=ax)
255
+ xlabel = 'Decoder timestep'
256
+ if info is not None:
257
+ xlabel += '\n\n' + info
258
+ plt.xlabel(xlabel)
259
+ plt.ylabel('Encoder timestep')
260
+ plt.tight_layout()
261
+
262
+ fig.canvas.draw()
263
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
264
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
265
+ plt.close()
266
+ return data
267
+
268
+
269
+ def load_wav_to_torch(full_path):
270
+ sampling_rate, data = read(full_path)
271
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
272
+
273
+
274
+ def load_filepaths_and_text(filename, split="|"):
275
+ with open(filename, encoding='utf-8') as f:
276
+ filepaths_and_text = [line.strip().split(split) for line in f]
277
+ return filepaths_and_text
278
+
279
+
280
+ def get_hparams(init=True):
281
+ parser = argparse.ArgumentParser()
282
+ parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json",
283
+ help='JSON file for configuration')
284
+ parser.add_argument('-m', '--model', type=str, default="pretrained_models",
285
+ help='Model name')
286
+ parser.add_argument('-n', '--max_epochs', type=int, default=50,
287
+ help='finetune epochs')
288
+ parser.add_argument('--drop_speaker_embed', type=bool, default=False, help='whether to drop existing characters')
289
+
290
+ args = parser.parse_args()
291
+ model_dir = os.path.join("./", args.model)
292
+
293
+ if not os.path.exists(model_dir):
294
+ os.makedirs(model_dir)
295
+
296
+ config_path = args.config
297
+ config_save_path = os.path.join(model_dir, "config.json")
298
+ if init:
299
+ with open(config_path, "r") as f:
300
+ data = f.read()
301
+ with open(config_save_path, "w") as f:
302
+ f.write(data)
303
+ else:
304
+ with open(config_save_path, "r") as f:
305
+ data = f.read()
306
+ config = json.loads(data)
307
+
308
+ hparams = HParams(**config)
309
+ hparams.model_dir = model_dir
310
+ hparams.max_epochs = args.max_epochs
311
+ hparams.drop_speaker_embed = args.drop_speaker_embed
312
+ return hparams
313
+
314
+
315
+ def get_hparams_from_dir(model_dir):
316
+ config_save_path = os.path.join(model_dir, "config.json")
317
+ with open(config_save_path, "r") as f:
318
+ data = f.read()
319
+ config = json.loads(data)
320
+
321
+ hparams = HParams(**config)
322
+ hparams.model_dir = model_dir
323
+ return hparams
324
+
325
+
326
+ def get_hparams_from_file(config_path):
327
+ with open(config_path, "r", encoding="utf-8") as f:
328
+ data = f.read()
329
+ config = json.loads(data)
330
+
331
+ hparams = HParams(**config)
332
+ return hparams
333
+
334
+
335
+ def check_git_hash(model_dir):
336
+ source_dir = os.path.dirname(os.path.realpath(__file__))
337
+ if not os.path.exists(os.path.join(source_dir, ".git")):
338
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
339
+ source_dir
340
+ ))
341
+ return
342
+
343
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
344
+
345
+ path = os.path.join(model_dir, "githash")
346
+ if os.path.exists(path):
347
+ saved_hash = open(path).read()
348
+ if saved_hash != cur_hash:
349
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
350
+ saved_hash[:8], cur_hash[:8]))
351
+ else:
352
+ open(path, "w").write(cur_hash)
353
+
354
+
355
+ def get_logger(model_dir, filename="train.log"):
356
+ global logger
357
+ logger = logging.getLogger(os.path.basename(model_dir))
358
+ logger.setLevel(logging.DEBUG)
359
+
360
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
361
+ if not os.path.exists(model_dir):
362
+ os.makedirs(model_dir)
363
+ h = logging.FileHandler(os.path.join(model_dir, filename))
364
+ h.setLevel(logging.DEBUG)
365
+ h.setFormatter(formatter)
366
+ logger.addHandler(h)
367
+ return logger
368
+
369
+
370
+ class HParams():
371
+ def __init__(self, **kwargs):
372
+ for k, v in kwargs.items():
373
+ if type(v) == dict:
374
+ v = HParams(**v)
375
+ self[k] = v
376
+
377
+ def keys(self):
378
+ return self.__dict__.keys()
379
+
380
+ def items(self):
381
+ return self.__dict__.items()
382
+
383
+ def values(self):
384
+ return self.__dict__.values()
385
+
386
+ def __len__(self):
387
+ return len(self.__dict__)
388
+
389
+ def __getitem__(self, key):
390
+ return getattr(self, key)
391
+
392
+ def __setitem__(self, key, value):
393
+ return setattr(self, key, value)
394
+
395
+ def __contains__(self, key):
396
+ return key in self.__dict__
397
+
398
+ def __repr__(self):
399
+ return self.__dict__.__repr__()