Spaces:
Running
on
Zero
Running
on
Zero
import glob | |
import json | |
import os | |
import random | |
import sys | |
import time | |
import warnings | |
import matplotlib | |
import numpy as np | |
import torch | |
import yaml | |
from torch import distributed as dist | |
from torch.nn.utils import weight_norm | |
matplotlib.use("Agg") | |
import matplotlib.pylab as plt | |
import re | |
import pathlib | |
def seed_everything(seed, cudnn_deterministic=False): | |
""" | |
Function that sets seed for pseudo-random number generators in: | |
pytorch, numpy, python.random | |
Args: | |
seed: the integer value seed for global random state | |
""" | |
if seed is not None: | |
# print(f"Global seed set to {seed}") | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
# if cudnn_deterministic: | |
# torch.backends.cudnn.deterministic = True | |
# warnings.warn('You have chosen to seed training. ' | |
# 'This will turn on the CUDNN deterministic setting, ' | |
# 'which can slow down your training considerably! ' | |
# 'You may see unexpected behavior when restarting ' | |
# 'from checkpoints.') | |
def is_primary(): | |
return get_rank() == 0 | |
def get_rank(): | |
if not dist.is_available(): | |
return 0 | |
if not dist.is_initialized(): | |
return 0 | |
return dist.get_rank() | |
def load_yaml_config(path): | |
with open(path) as f: | |
config = yaml.full_load(f) | |
return config | |
def save_config_to_yaml(config, path): | |
assert path.endswith('.yaml') | |
with open(path, 'w') as f: | |
f.write(yaml.dump(config)) | |
f.close() | |
def save_dict_to_json(d, path, indent=None): | |
json.dump(d, open(path, 'w'), indent=indent) | |
def load_dict_from_json(path): | |
return json.load(open(path, 'r')) | |
def write_args(args, path): | |
args_dict = dict((name, getattr(args, name)) for name in dir(args) | |
if not name.startswith('_')) | |
with open(path, 'a') as args_file: | |
args_file.write('==> torch version: {}\n'.format(torch.__version__)) | |
args_file.write( | |
'==> cudnn version: {}\n'.format(torch.backends.cudnn.version())) | |
args_file.write('==> Cmd:\n') | |
args_file.write(str(sys.argv)) | |
args_file.write('\n==> args:\n') | |
for k, v in sorted(args_dict.items()): | |
args_file.write(' %s: %s\n' % (str(k), str(v))) | |
args_file.close() | |
class Logger(object): | |
def __init__(self, args): | |
self.args = args | |
self.save_dir = args.save_dir | |
self.is_primary = is_primary() | |
if self.is_primary: | |
os.makedirs(self.save_dir, exist_ok=True) | |
# save the args and config | |
self.config_dir = os.path.join(self.save_dir, 'configs') | |
os.makedirs(self.config_dir, exist_ok=True) | |
file_name = os.path.join(self.config_dir, 'args.txt') | |
write_args(args, file_name) | |
log_dir = os.path.join(self.save_dir, 'logs') | |
if not os.path.exists(log_dir): | |
os.makedirs(log_dir, exist_ok=True) | |
self.text_writer = open(os.path.join(log_dir, 'log.txt'), | |
'a') # 'w') | |
if args.tensorboard: | |
self.log_info('using tensorboard') | |
self.tb_writer = torch.utils.tensorboard.SummaryWriter( | |
log_dir=log_dir | |
) # tensorboard.SummaryWriter(log_dir=log_dir) | |
else: | |
self.tb_writer = None | |
def save_config(self, config): | |
if self.is_primary: | |
save_config_to_yaml(config, | |
os.path.join(self.config_dir, 'config.yaml')) | |
def log_info(self, info, check_primary=True): | |
if self.is_primary or (not check_primary): | |
print(info) | |
if self.is_primary: | |
info = str(info) | |
time_str = time.strftime('%Y-%m-%d-%H-%M') | |
info = '{}: {}'.format(time_str, info) | |
if not info.endswith('\n'): | |
info += '\n' | |
self.text_writer.write(info) | |
self.text_writer.flush() | |
def add_scalar(self, **kargs): | |
"""Log a scalar variable.""" | |
if self.is_primary: | |
if self.tb_writer is not None: | |
self.tb_writer.add_scalar(**kargs) | |
def add_scalars(self, **kargs): | |
"""Log a scalar variable.""" | |
if self.is_primary: | |
if self.tb_writer is not None: | |
self.tb_writer.add_scalars(**kargs) | |
def add_image(self, **kargs): | |
"""Log a scalar variable.""" | |
if self.is_primary: | |
if self.tb_writer is not None: | |
self.tb_writer.add_image(**kargs) | |
def add_images(self, **kargs): | |
"""Log a scalar variable.""" | |
if self.is_primary: | |
if self.tb_writer is not None: | |
self.tb_writer.add_images(**kargs) | |
def close(self): | |
if self.is_primary: | |
self.text_writer.close() | |
self.tb_writer.close() | |
def plot_spectrogram(spectrogram): | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
im = ax.imshow( | |
spectrogram, aspect="auto", origin="lower", interpolation='none') | |
plt.colorbar(im, ax=ax) | |
fig.canvas.draw() | |
plt.close() | |
return fig | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def apply_weight_norm(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
weight_norm(m) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
def load_checkpoint(filepath, device): | |
assert os.path.isfile(filepath) | |
print("Loading '{}'".format(filepath)) | |
checkpoint_dict = torch.load(filepath, map_location=device) | |
print("Complete.") | |
return checkpoint_dict | |
def save_checkpoint(filepath, obj, num_ckpt_keep=5): | |
name = re.match(r'(do|g)_\d+', pathlib.Path(filepath).name).group(1) | |
ckpts = sorted(pathlib.Path(filepath).parent.glob(f'{name}_*')) | |
if len(ckpts) > num_ckpt_keep: | |
[os.remove(c) for c in ckpts[:-num_ckpt_keep]] | |
print("Saving checkpoint to {}".format(filepath)) | |
torch.save(obj, filepath) | |
print("Complete.") | |
def scan_checkpoint(cp_dir, prefix): | |
pattern = os.path.join(cp_dir, prefix + '????????') | |
cp_list = glob.glob(pattern) | |
if len(cp_list) == 0: | |
return None | |
return sorted(cp_list)[-1] | |