Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,7 @@ from transformers import (
|
|
13 |
st.set_page_config(page_title="😶🌫️ FuseChat Model")
|
14 |
|
15 |
root_path = "FuseAI"
|
|
|
16 |
|
17 |
@st.cache_resource
|
18 |
def load_model(model_name):
|
@@ -30,6 +31,7 @@ def load_model(model_name):
|
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
31 |
f"{root_path}/{model_name}",
|
32 |
device_map="auto",
|
|
|
33 |
torch_dtype=torch.bfloat16,
|
34 |
trust_remote_code=True,
|
35 |
)
|
@@ -41,8 +43,6 @@ def load_model(model_name):
|
|
41 |
with st.sidebar:
|
42 |
st.title('😶🌫️ FuseChat')
|
43 |
st.write('This chatbot is created using FuseChat, a model developed by FuseAI')
|
44 |
-
st.subheader('Models and parameters')
|
45 |
-
selected_model = st.sidebar.selectbox('Choose a FuseChat model', ['FuseChat-7B-VaRM', 'FuseChat-7B-Slerp', 'FuseChat-7B-TA'], key='selected_model')
|
46 |
temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=5.0, value=0.1, step=0.01)
|
47 |
top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
|
48 |
top_k = st.sidebar.slider('top_k', min_value=1, max_value=1000, value=50, step=1)
|
@@ -50,7 +50,7 @@ with st.sidebar:
|
|
50 |
max_length = st.sidebar.slider('max new tokens', min_value=32, max_value=2000, value=240, step=8)
|
51 |
|
52 |
with st.spinner('loading model..'):
|
53 |
-
model, tokenizer = load_model(
|
54 |
|
55 |
# Store LLM generated responses
|
56 |
if "messages" not in st.session_state.keys():
|
@@ -67,7 +67,8 @@ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
|
|
67 |
|
68 |
|
69 |
def generate_fusechat_response():
|
70 |
-
string_dialogue = "You are a helpful and harmless assistant."
|
|
|
71 |
for dict_message in st.session_state.messages:
|
72 |
if dict_message["role"] == "user":
|
73 |
string_dialogue += "GPT4 Correct User: " + dict_message["content"] + "<|end_of_turn|>"
|
|
|
13 |
st.set_page_config(page_title="😶🌫️ FuseChat Model")
|
14 |
|
15 |
root_path = "FuseAI"
|
16 |
+
model_name = "FuseChat-7B-VaRM"
|
17 |
|
18 |
@st.cache_resource
|
19 |
def load_model(model_name):
|
|
|
31 |
model = AutoModelForCausalLM.from_pretrained(
|
32 |
f"{root_path}/{model_name}",
|
33 |
device_map="auto",
|
34 |
+
load_in_8bit=True,
|
35 |
torch_dtype=torch.bfloat16,
|
36 |
trust_remote_code=True,
|
37 |
)
|
|
|
43 |
with st.sidebar:
|
44 |
st.title('😶🌫️ FuseChat')
|
45 |
st.write('This chatbot is created using FuseChat, a model developed by FuseAI')
|
|
|
|
|
46 |
temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=5.0, value=0.1, step=0.01)
|
47 |
top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
|
48 |
top_k = st.sidebar.slider('top_k', min_value=1, max_value=1000, value=50, step=1)
|
|
|
50 |
max_length = st.sidebar.slider('max new tokens', min_value=32, max_value=2000, value=240, step=8)
|
51 |
|
52 |
with st.spinner('loading model..'):
|
53 |
+
model, tokenizer = load_model(model_name)
|
54 |
|
55 |
# Store LLM generated responses
|
56 |
if "messages" not in st.session_state.keys():
|
|
|
67 |
|
68 |
|
69 |
def generate_fusechat_response():
|
70 |
+
# string_dialogue = "You are a helpful and harmless assistant."
|
71 |
+
string_dialogue = ""
|
72 |
for dict_message in st.session_state.messages:
|
73 |
if dict_message["role"] == "user":
|
74 |
string_dialogue += "GPT4 Correct User: " + dict_message["content"] + "<|end_of_turn|>"
|