# 1. Test setup: # docker run -it --rm --gpus all nvidia/cuda:11.4.2-cudnn8-runtime-ubuntu20.04 nvidia-smi # # If the above does not work, try adding the --privileged flag # and changing the command to `sh -c 'ldconfig -v && nvidia-smi'`. # # 2. Start training: # docker build -f dreamerv3/Dockerfile -t img . && \ # docker run -it --rm --gpus all -v ~/logdir:/logdir img \ # sh scripts/xvfb_run.sh python3 dreamerv3/train.py \ # --logdir "/logdir/$(date +%Y%m%d-%H%M%S)" \ # --configs dmc_vision --task dmc_walker_walk # # 3. See results: # tensorboard --logdir ~/logdir # System FROM nvidia/cuda:11.4.2-cudnn8-devel-ubuntu20.04 ARG DEBIAN_FRONTEND=noninteractive ENV TZ=America/San_Francisco ENV PYTHONUNBUFFERED 1 ENV PIP_DISABLE_PIP_VERSION_CHECK 1 ENV PIP_NO_CACHE_DIR 1 RUN apt-get update && apt-get install -y \ ffmpeg git python3-pip vim libglew-dev \ x11-xserver-utils xvfb \ && apt-get clean RUN pip3 install --upgrade pip # Envs ENV MUJOCO_GL egl ENV DMLAB_DATASET_PATH /dmlab_data COPY scripts scripts RUN sh scripts/install-dmlab.sh RUN sh scripts/install-atari.sh RUN sh scripts/install-minecraft.sh ENV NUMBA_CACHE_DIR=/tmp RUN pip3 install crafter RUN pip3 install dm_control RUN pip3 install robodesk RUN pip3 install bsuite # Agent RUN pip3 install jax[cuda11_cudnn82] -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html RUN pip3 install jaxlib RUN pip3 install tensorflow_probability RUN pip3 install optax RUN pip3 install tensorflow-cpu ENV XLA_PYTHON_CLIENT_MEM_FRACTION 0.8 # Google Cloud DNS cache (optional) ENV GCS_RESOLVE_REFRESH_SECS=60 ENV GCS_REQUEST_CONNECTION_TIMEOUT_SECS=300 ENV GCS_METADATA_REQUEST_TIMEOUT_SECS=300 ENV GCS_READ_REQUEST_TIMEOUT_SECS=300 ENV GCS_WRITE_REQUEST_TIMEOUT_SECS=600 # Embodied RUN pip3 install numpy cloudpickle ruamel.yaml rich zmq msgpack COPY . /embodied RUN chown -R 1000:root /embodied && chmod -R 775 /embodied WORKDIR embodied