|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
import time |
|
import psutil |
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
def load_pipeline(model_id): |
|
if model_id in PIPELINES: |
|
return PIPELINES[model_id] |
|
else: |
|
|
|
model_path = snapshot_download(repo_id=model_id, local_dir="./models") |
|
pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32) |
|
pipe.to(DEVICE) |
|
PIPELINES[model_id] = pipe |
|
return pipe |
|
|
|
|
|
|
|
NUM_CPU_CORES = psutil.cpu_count(logical=True) |
|
|
|
|
|
MAX_THREADS = min(8, NUM_CPU_CORES) |
|
|
|
|
|
DEVICE = "cpu" |
|
|
|
|
|
MODEL_OPTIONS = { |
|
"Модель штучного інтелекту середня (Більше часу на виконання-краща якість)": "CompVis/stable-diffusion-v1-4", |
|
"Модель штучного інтелекту мала (Швидше-середня якість)": "hf-internal-testing/tiny-stable-diffusion-pipe", |
|
} |
|
|
|
|
|
DEFAULT_MODEL_ID = MODEL_OPTIONS["Модель штучного інтелекту мала (Швидше-середня якість)"] |
|
DEFAULT_IMAGE_SIZE = 512 |
|
|
|
|
|
PIPELINES = {} |
|
|
|
def load_pipeline(model_id): |
|
if model_id in PIPELINES: |
|
return PIPELINES[model_id] |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) |
|
pipe.to(DEVICE) |
|
PIPELINES[model_id] = pipe |
|
return pipe |
|
|
|
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice): |
|
if not prompt: |
|
raise gr.Error("Будь ласка, введіть опис для зображення.") |
|
|
|
torch.set_num_threads(MAX_THREADS) |
|
|
|
pipe = load_pipeline(MODEL_OPTIONS[model_choice]) |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
generator = torch.Generator(device=DEVICE) |
|
if not randomize_seed: |
|
generator = generator.manual_seed(seed) |
|
|
|
start_time = time.time() |
|
images = pipe( |
|
prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images, |
|
generator=generator, |
|
).images |
|
|
|
end_time = time.time() |
|
generation_time = end_time - start_time |
|
|
|
return images, f"Час генерації: {generation_time:.2f} секунд" |
|
|
|
with gr.Blocks() as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# Демоверсія [автор Ростислав Губа] |
|
Для співпраці пишіть на [gubarostislav@gmail.com] |
|
""") |
|
with gr.Row(): |
|
with gr.Column(scale=5): |
|
prompt = gr.Textbox(label="Опис зображення") |
|
negative_prompt = gr.Textbox(label="Не показувати", value="cloned, lowres, bad quality, watermark") |
|
with gr.Column(scale=1): |
|
model_choice = gr.Radio( |
|
choices=list(MODEL_OPTIONS.keys()), |
|
label="Якість моделі", |
|
value=list(MODEL_OPTIONS.keys())[0], |
|
) |
|
with gr.Row(): |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=1) |
|
randomize_seed = gr.Checkbox(label="Випадковий Seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Ширина", minimum=512, maximum=512, step=64, value=DEFAULT_IMAGE_SIZE) |
|
height = gr.Slider(label="Висота", minimum=512, maximum=512, step=64, value=DEFAULT_IMAGE_SIZE) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider(label="Шкала відповідності", minimum=0, maximum=10, step=0.5, value=7.5) |
|
num_inference_steps = gr.Slider(label="Покрокова пікселізація (більще значення- більше часу)", minimum=20, maximum=40, step=5, value=20) |
|
|
|
with gr.Row(): |
|
num_images = gr.Slider(label="Кількість зображень", minimum=1, maximum=4, step=1, value=1) |
|
|
|
run_button = gr.Button("Згенерувати") |
|
gallery = gr.Gallery(label="Створені зображення") |
|
status_text = gr.Textbox(label="Виконання") |
|
|
|
run_button.click( |
|
fn=generate_image, |
|
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice], |
|
outputs=[gallery, status_text], |
|
) |
|
|
|
|
|
demo.launch(share=True) |
|
|