Picture / app.py
G-Rost's picture
Update app.py
9180ce7 verified
raw
history blame
3.92 kB
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
import time
import psutil
# Get the number of physical CPU cores (excluding hyperthreads)
NUM_CPU_CORES = psutil.cpu_count(logical=True)
# Cap the number of threads to the available physical cores
MAX_THREADS = min(8, NUM_CPU_CORES)
# Device and hardware configuration
DEVICE = "cpu"
# Model Options (optimized for CPU and memory constraints)
MODEL_OPTIONS = {
"Medium Quality (Faster)": "stabilityai/stable-diffusion-2-base",
"Fastest (Draft Quality)": "hf-internal-testing/tiny-stable-diffusion-pipe",
}
# Default to fastest model and lower image size for limited resources
DEFAULT_MODEL_ID = MODEL_OPTIONS["Fastest (Draft Quality)"]
DEFAULT_IMAGE_SIZE = 512 # Lower default resolution
# Cache models to avoid reloading
PIPELINES = {}
def load_pipeline(model_id):
if model_id in PIPELINES:
return PIPELINES[model_id]
else:
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
pipe.to(DEVICE)
PIPELINES[model_id] = pipe
return pipe
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice):
if not prompt:
raise gr.Error("Будь ласка, введіть опис для зображення.")
torch.set_num_threads(MAX_THREADS)
pipe = load_pipeline(MODEL_OPTIONS[model_choice])
# Adjust memory usage based on available RAM
torch.cuda.empty_cache()
generator = torch.Generator(device=DEVICE)
if not randomize_seed:
generator = generator.manual_seed(seed)
start_time = time.time()
images = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
).images
end_time = time.time()
generation_time = end_time - start_time
return images, f"Час генерації: {generation_time:.2f} секунд"
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=5):
prompt = gr.Textbox(label="Опис зображення")
negative_prompt = gr.Textbox(label="Негативний опис", value="")
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=list(MODEL_OPTIONS.keys()),
label="Якість моделі",
value=list(MODEL_OPTIONS.keys())[0],
)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=42)
randomize_seed = gr.Checkbox(label="Випадковий Seed", value=True)
with gr.Row():
width = gr.Slider(label="Ширина", minimum=256, maximum=1024, step=64, value=DEFAULT_IMAGE_SIZE)
height = gr.Slider(label="Висота", minimum=256, maximum=1024, step=64, value=DEFAULT_IMAGE_SIZE)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.5, value=7.5)
num_inference_steps = gr.Slider(label="Кроки інференсу", minimum=10, maximum=100, step=5, value=50)
with gr.Row():
num_images = gr.Slider(label="Кількість зображень", minimum=1, maximum=4, step=1, value=1)
run_button = gr.Button("Згенерувати")
gallery = gr.Gallery(label="Згенеровані зображення")
status_text = gr.Textbox(label="Статус")
run_button.click(
fn=generate_image,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice],
outputs=[gallery, status_text],
)
demo.launch(share=True)