G-Rost commited on
Commit
c567799
·
verified ·
1 Parent(s): 8c0e823

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -17
app.py CHANGED
@@ -1,48 +1,51 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline, LMSDiscreteScheduler
5
  import torch
6
- import time # Import time for measuring generation time
7
 
8
- # Device configuration (explicitly set to CPU)
9
  DEVICE = "cpu"
 
10
 
11
- # Model Options (optimized for CPU)
12
  MODEL_OPTIONS = {
13
  "Medium Quality (Faster)": "stabilityai/stable-diffusion-2-base",
14
  "Fastest (Draft Quality)": "hf-internal-testing/tiny-stable-diffusion-pipe",
15
  }
16
 
17
- # Default to fastest model
18
  DEFAULT_MODEL_ID = MODEL_OPTIONS["Fastest (Draft Quality)"]
 
19
 
20
- # Cache models to avoid reloading them for each generation
21
  PIPELINES = {}
22
 
23
  def load_pipeline(model_id):
24
  if model_id in PIPELINES:
25
  return PIPELINES[model_id]
26
  else:
27
- pipe = DiffusionPipeline.from_pretrained(
28
- model_id, torch_dtype=torch.float32
29
- )
30
- pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
31
- pipe = pipe.to(DEVICE)
32
  PIPELINES[model_id] = pipe
33
  return pipe
34
 
35
  def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice):
36
  if not prompt:
37
  raise gr.Error("Будь ласка, введіть опис для зображення.")
 
38
 
39
  pipe = load_pipeline(MODEL_OPTIONS[model_choice])
40
 
 
 
 
41
  generator = torch.Generator(device=DEVICE)
42
  if not randomize_seed:
43
  generator = generator.manual_seed(seed)
44
 
45
- start_time = time.time() # Record start time
46
  images = pipe(
47
  prompt,
48
  negative_prompt=negative_prompt,
@@ -50,17 +53,15 @@ def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height,
50
  height=height,
51
  guidance_scale=guidance_scale,
52
  num_inference_steps=num_inference_steps,
53
- num_images_per_prompt=num_images,
 
54
  generator=generator,
55
  ).images
56
 
57
  end_time = time.time()
58
  generation_time = end_time - start_time
59
 
60
- return images, f"Час генерації: {generation_time:.2f} секунд" # Return images and generation time
61
-
62
-
63
- # ... (Gradio UI remains largely the same, with an added status text output)
64
 
65
  run_button = gr.Button("Згенерувати")
66
  gallery = gr.Gallery(label="Згенеровані зображення")
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ from diffusers import DiffusionPipeline
5
  import torch
6
+ import time
7
 
8
+ # Device and hardware configuration
9
  DEVICE = "cpu"
10
+ NUM_CPU_CORES = 2
11
 
12
+ # Model Options (optimized for CPU and memory constraints)
13
  MODEL_OPTIONS = {
14
  "Medium Quality (Faster)": "stabilityai/stable-diffusion-2-base",
15
  "Fastest (Draft Quality)": "hf-internal-testing/tiny-stable-diffusion-pipe",
16
  }
17
 
18
+ # Default to fastest model and lower image size for limited resources
19
  DEFAULT_MODEL_ID = MODEL_OPTIONS["Fastest (Draft Quality)"]
20
+ DEFAULT_IMAGE_SIZE = 512 # Lower default resolution
21
 
22
+ # Cache models to avoid reloading
23
  PIPELINES = {}
24
 
25
  def load_pipeline(model_id):
26
  if model_id in PIPELINES:
27
  return PIPELINES[model_id]
28
  else:
29
+ pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
30
+ pipe.to(DEVICE)
 
 
 
31
  PIPELINES[model_id] = pipe
32
  return pipe
33
 
34
  def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice):
35
  if not prompt:
36
  raise gr.Error("Будь ласка, введіть опис для зображення.")
37
+ torch.set_num_threads(NUM_CPU_CORES) # Set PyTorch thread count
38
 
39
  pipe = load_pipeline(MODEL_OPTIONS[model_choice])
40
 
41
+ # Adjust memory usage based on available RAM
42
+ torch.cuda.empty_cache() # Not strictly necessary on CPU, but good practice
43
+
44
  generator = torch.Generator(device=DEVICE)
45
  if not randomize_seed:
46
  generator = generator.manual_seed(seed)
47
 
48
+ start_time = time.time()
49
  images = pipe(
50
  prompt,
51
  negative_prompt=negative_prompt,
 
53
  height=height,
54
  guidance_scale=guidance_scale,
55
  num_inference_steps=num_inference_steps,
56
+ num_images_per_prompt=num_images,  
57
+
58
  generator=generator,
59
  ).images
60
 
61
  end_time = time.time()
62
  generation_time = end_time - start_time
63
 
64
+ return images, f"Час генерації: {generation_time:.2f} секунд"
 
 
 
65
 
66
  run_button = gr.Button("Згенерувати")
67
  gallery = gr.Gallery(label="Згенеровані зображення")