import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch import time # Device and hardware configuration DEVICE = "cpu" NUM_CPU_CORES = 2 # Model Options (optimized for CPU and memory constraints) MODEL_OPTIONS = { "Medium Quality (Faster)": "stabilityai/stable-diffusion-2-base", "Fastest (Draft Quality)": "hf-internal-testing/tiny-stable-diffusion-pipe", } # Default to fastest model and lower image size for limited resources DEFAULT_MODEL_ID = MODEL_OPTIONS["Fastest (Draft Quality)"] DEFAULT_IMAGE_SIZE = 512 # Lower default resolution # Cache models to avoid reloading PIPELINES = {} def load_pipeline(model_id): if model_id in PIPELINES: return PIPELINES[model_id] else: pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) pipe.to(DEVICE) PIPELINES[model_id] = pipe return pipe def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice): if not prompt: raise gr.Error("Будь ласка, введіть опис для зображення.") torch.set_num_threads(NUM_CPU_CORES) # Set PyTorch thread count pipe = load_pipeline(MODEL_OPTIONS[model_choice]) # Adjust memory usage based on available RAM torch.cuda.empty_cache() # Not strictly necessary on CPU, but good practice generator = torch.Generator(device=DEVICE) if not randomize_seed: generator = generator.manual_seed(seed) start_time = time.time() images = pipe( prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, generator=generator ).images end_time = time.time() generation_time = end_time - start_time return images, f"Час генерації: {generation_time:.2f} секунд" run_button = gr.Button("Згенерувати") gallery = gr.Gallery(label="Згенеровані зображення") status_text = gr.Textbox(label="Статус") run_button.click( fn=generate_image, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice], outputs=[gallery, status_text], # Output both the gallery and status text )