import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch import time import psutil from huggingface_hub import snapshot_download # New import # ... (Other imports and variables remain the same) def load_pipeline(model_id): if model_id in PIPELINES: return PIPELINES[model_id] else: # Download model using snapshot_download to handle LFS files model_path = snapshot_download(repo_id=model_id, local_dir="./models") # Download and cache models pipe = DiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32) pipe.to(DEVICE) PIPELINES[model_id] = pipe return pipe # ... (Rest of your code remains the same) # Get the number of physical CPU cores (excluding hyperthreads) NUM_CPU_CORES = psutil.cpu_count(logical=True) # Cap the number of threads to the available physical cores MAX_THREADS = min(8, NUM_CPU_CORES) # Device and hardware configuration DEVICE = "cpu" # Model Options (optimized for CPU and memory constraints) MODEL_OPTIONS = { "Модель штучного інтелекту середня (Довше-краще якість)": "CompVis/stable-diffusion-v1-4", "Модель штучного інтелекту мала (Швидко-гірша якість)": "hf-internal-testing/tiny-stable-diffusion-pipe", } # Default to fastest model and lower image size for limited resources DEFAULT_MODEL_ID = MODEL_OPTIONS["Fastest (Draft Quality)"] DEFAULT_IMAGE_SIZE = 512 # Lower default resolution # Cache models to avoid reloading PIPELINES = {} def load_pipeline(model_id): if model_id in PIPELINES: return PIPELINES[model_id] else: pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) pipe.to(DEVICE) PIPELINES[model_id] = pipe return pipe def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice): if not prompt: raise gr.Error("Будь ласка, введіть опис для зображення.") torch.set_num_threads(MAX_THREADS) pipe = load_pipeline(MODEL_OPTIONS[model_choice]) # Adjust memory usage based on available RAM torch.cuda.empty_cache() generator = torch.Generator(device=DEVICE) if not randomize_seed: generator = generator.manual_seed(seed) start_time = time.time() images = pipe( prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images, generator=generator, ).images end_time = time.time() generation_time = end_time - start_time return images, f"Час генерації: {generation_time:.2f} секунд" with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=5): prompt = gr.Textbox(label="Опис зображення") negative_prompt = gr.Textbox(label="Не показувати", value="") with gr.Column(scale=1): model_choice = gr.Radio( choices=list(MODEL_OPTIONS.keys()), label="Якість моделі", value=list(MODEL_OPTIONS.keys())[0], ) with gr.Row(): seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=42) randomize_seed = gr.Checkbox(label="Випадковий Seed", value=True) with gr.Row(): width = gr.Slider(label="Ширина", minimum=512, maximum=1024, step=64, value=DEFAULT_IMAGE_SIZE) height = gr.Slider(label="Висота", minimum=512, maximum=1024, step=64, value=DEFAULT_IMAGE_SIZE) with gr.Row(): guidance_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.5, value=7.5) num_inference_steps = gr.Slider(label="Кроки інференсу", minimum=20, maximum=50, step=10, value=20) with gr.Row(): num_images = gr.Slider(label="Кількість зображень", minimum=1, maximum=4, step=1, value=1) run_button = gr.Button("Створити") gallery = gr.Gallery(label="Створені зображення") status_text = gr.Textbox(label="Виконання") run_button.click( fn=generate_image, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, num_images, model_choice], outputs=[gallery, status_text], ) demo.launch(share=True)