Spaces:
Sleeping
Sleeping
File size: 8,411 Bytes
89e696a 36f3034 00825cb 89e696a 449983f 2c1bfb4 449983f dfabd70 eca3864 ea19f03 f637681 6160f84 ea19f03 6160f84 449983f f637681 45bb8a5 449983f d0f6704 449983f dfabd70 f0e35ad dfabd70 449983f ea19f03 449983f 00825cb 449983f 00825cb 449983f 00825cb ea19f03 00825cb 449983f dfabd70 ea19f03 00825cb 449983f ea19f03 00825cb dfabd70 00825cb 449983f 00825cb dfabd70 00825cb ea19f03 dfabd70 ea19f03 00825cb 449983f 2c1bfb4 449983f 2c1bfb4 449983f b6148e0 ab9c8b0 36f3034 449983f ab9c8b0 36f3034 449983f d0f6704 449983f d0f6704 449983f d0f6704 449983f d0f6704 45bb8a5 449983f d0f6704 ea19f03 45bb8a5 ea19f03 45bb8a5 f637681 449983f d83eed5 449983f 15cdf0a 449983f 11ebafd ea19f03 449983f ea19f03 449983f ea19f03 416d73b 449983f ea19f03 00825cb 45bb8a5 449983f f637681 45bb8a5 f637681 45bb8a5 accd0d7 449983f ab9c8b0 36f3034 449983f d0f6704 449983f d0f6704 449983f d0f6704 449983f d0f6704 45bb8a5 d0f6704 f637681 45bb8a5 449983f 45bb8a5 449983f 45bb8a5 449983f 45bb8a5 00825cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
# Load CSV files
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
# Ignore the last two columns
df = df.iloc[:, :-2]
# Ensure customer code is a string
df['CLIENTE'] = df['CLIENTE'].astype(str)
# Function to get supplier name
def get_supplier_name(code):
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
return name[0] if len(name) > 0 else code
# Function to create radar chart
def radar_chart(categories, values, amounts, title):
# Number of variables
N = len(categories)
# Calculate angles for each point
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
# Initialize the plot
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
# Normalize values and amounts
max_value = max(values)
normalized_values = [v / max_value for v in values]
total_amount = sum(amounts)
normalized_amounts = [a / total_amount for a in amounts]
# Draw polygon for units and fill it
normalized_values += normalized_values[:1]
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units')
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
# Draw polygon for amounts and fill it
normalized_amounts += normalized_amounts[:1]
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend')
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
# Set axes
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, size=8, wrap=True)
ax.set_ylim(0, max(max(normalized_values), max(normalized_amounts)) * 1.1)
# Draw reference circles
circles = np.linspace(0, 1, 5)
for circle in circles:
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
# Remove radial labels and chart borders
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False)
# Add title and legend
plt.title(title, size=16, y=1.1)
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
return fig
# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
Use the tools below to dive deeper into your customer data.
""")
# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Customer Recommendations"])
# Home Page
if page == "":
st.markdown("## Welcome to the Customer Insights App")
st.write("Use the dropdown menu to navigate between the different sections.")
# Customer Analysis Page
elif page == "Customer Analysis":
st.title("Customer Analysis")
st.markdown("""
Use the tools below to explore your customer data.
""")
# Customer filter field
partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
# Filter customer options that match the partial code
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
# Create a list of filtered customers for the selectbox
customer_list = filtered_customers['CLIENTE'].unique()
# Customer selection with filtered autocomplete
customer_code = st.selectbox("Select Customer Code", customer_list)
if customer_code:
# Filter data for the selected customer
customer_data = df[df["CLIENTE"] == customer_code]
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == customer_code]
if not customer_data.empty and not customer_euros.empty:
st.write(f"### Analysis for Customer {customer_code}")
# Define purchase threshold
purchase_threshold = 0
# Get all manufacturers the customer bought from (ignore the customer column)
all_manufacturers = customer_data.iloc[:, 1:].T[customer_data.iloc[:, 1:].T[customer_data.index[0]] > purchase_threshold]
# Sort manufacturers by value in descending order
all_manufacturers = all_manufacturers.sort_values(by=customer_data.index[0], ascending=False)
# Prepare values and manufacturers
values = all_manufacturers[customer_data.index[0]].values.tolist()
manufacturers = [get_supplier_name(m) for m in all_manufacturers.index.tolist()]
# Get amounts in euros
amounts = []
for m in all_manufacturers.index.tolist():
if m in customer_euros.columns:
amounts.append(customer_euros[m].values[0])
else:
amounts.append(0)
# If there are fewer than 3 manufacturers, add a third one with value 0
if len(manufacturers) < 3:
manufacturers.append("Other")
values.append(0)
amounts.append(0)
# Display the results for each manufacturer
st.write(f"### Results for {len(manufacturers)} manufacturers (sorted):")
for manufacturer, value, amount in zip(manufacturers, values, amounts):
st.write(f"{manufacturer} = {value:.4f} units, €{amount:.2f}")
# Create and display the radar chart
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for {len(manufacturers)} Manufacturers of Customer {customer_code}')
st.pyplot(fig)
# Customer sales 2021-2024 (if data exists)
if 'VENTA_2021' in df.columns and 'VENTA_2022' in df.columns and 'VENTA_2023' in df.columns and 'VENTA_2024' in df.columns:
years = ['2021', '2022', '2023', '2024']
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024']
customer_sales = customer_data[sales_columns].values[0]
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
st.plotly_chart(fig_sales)
else:
st.warning("Sales data for 2021-2024 not available.")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")
# Customer Recommendations Page
elif page == "Customer Recommendations":
st.title("Customer Recommendations")
st.markdown("""
Get tailored recommendations for your customers based on their purchasing history.
""")
# Customer filter field
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
# Filter customer options that match the partial code
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
# Create a list of filtered customers for the selectbox
customer_list = filtered_customers['CLIENTE'].unique()
# Customer selection with filtered autocomplete
customer_code = st.selectbox("Select Customer Code for Recommendations", customer_list)
if customer_code:
customer_data = df[df["CLIENTE"] == customer_code]
if not customer_data.empty:
# Show selected customer's purchase history
st.write(f"### Purchase History for Customer {customer_code}")
st.write(customer_data)
# Generate recommendations (placeholder)
st.write(f"### Recommended Products for Customer {customer_code}")
# You can replace this with the logic of the recommendation model
st.write("Product A, Product B, Product C")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.") |