Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
# Page configuration | |
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:") | |
# Load CSV files | |
df = pd.read_csv("df_clean.csv") | |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';') | |
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',') | |
# Ensure customer codes are strings | |
df['CLIENTE'] = df['CLIENTE'].astype(str) | |
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str) | |
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str) | |
fieles_df = pd.read_csv("clientes_relevantes.csv") | |
# Cargo csv del histórico de cestas | |
cestas = pd.read_csv("cestas.csv") | |
# Cargo csv de productos y descripcion | |
productos = pd.read_csv("productos.csv") | |
# Convert all columns except 'CLIENTE' to float in euros_proveedor | |
for col in euros_proveedor.columns: | |
if col != 'CLIENTE': | |
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce') | |
# Check for NaN values after conversion | |
if euros_proveedor.isna().any().any(): | |
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.") | |
# Ignore the last two columns of df | |
df = df.iloc[:, :-2] | |
# Function to get supplier name | |
def get_supplier_name(code): | |
code = str(code) # Ensure code is a string | |
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values | |
return name[0] if len(name) > 0 else code | |
# Function to create radar chart with square root transformation | |
def radar_chart(categories, values, amounts, title): | |
N = len(categories) | |
angles = [n / float(N) * 2 * np.pi for n in range(N)] | |
angles += angles[:1] | |
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar')) | |
# Apply square root transformation | |
sqrt_values = np.sqrt(values) | |
sqrt_amounts = np.sqrt(amounts) | |
max_sqrt_value = max(sqrt_values) | |
normalized_values = [v / max_sqrt_value for v in sqrt_values] | |
# Adjust scaling for spend values | |
max_sqrt_amount = max(sqrt_amounts) | |
scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up | |
normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts] | |
normalized_values += normalized_values[:1] | |
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)') | |
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4') | |
normalized_amounts += normalized_amounts[:1] | |
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)') | |
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082') | |
ax.set_xticks(angles[:-1]) | |
ax.set_xticklabels(categories, size=8, wrap=True) | |
ax.set_ylim(0, 1) | |
circles = np.linspace(0, 1, 5) | |
for circle in circles: | |
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5) | |
ax.set_yticklabels([]) | |
ax.spines['polar'].set_visible(False) | |
plt.title(title, size=16, y=1.1) | |
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1)) | |
return fig | |
# Main page design | |
st.title("Welcome to Customer Insights App") | |
st.markdown(""" | |
This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history. | |
Use the tools below to dive deeper into your customer data. | |
""") | |
# Navigation menu | |
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"]) | |
# Home Page | |
if page == "": | |
st.markdown("## Welcome to the Customer Insights App") | |
st.write("Use the dropdown menu to navigate between the different sections.") | |
# Customer Analysis Page | |
elif page == "Customer Analysis": | |
st.title("Customer Analysis") | |
st.markdown("Use the tools below to explore your customer data.") | |
partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)") | |
if partial_code: | |
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)] | |
else: | |
filtered_customers = df | |
customer_list = filtered_customers['CLIENTE'].unique() | |
customer_code = st.selectbox("Select Customer Code", customer_list) | |
if st.button("Calcular"): | |
if customer_code: | |
customer_data = df[df["CLIENTE"] == str(customer_code)] | |
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)] | |
if not customer_data.empty and not customer_euros.empty: | |
st.write(f"### Analysis for Customer {customer_code}") | |
# Get percentage of units sold for each manufacturer | |
all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column | |
all_manufacturers.index = all_manufacturers.index.astype(str) | |
# Get total sales for each manufacturer | |
sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column | |
sales_data.index = sales_data.index.astype(str) | |
# Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types | |
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore') | |
# Ensure all values are numeric | |
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce') | |
# Sort manufacturers by percentage of units and get top 10 | |
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10) | |
# Sort manufacturers by total sales and get top 10 | |
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10) | |
# Combine top manufacturers from both lists and get up to 20 unique manufacturers | |
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20] | |
# Filter out manufacturers that are not present in both datasets | |
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index] | |
# Create a DataFrame with combined data for these top manufacturers | |
combined_data = pd.DataFrame({ | |
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]], | |
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]] | |
}).fillna(0) | |
# Sort by units, then by sales | |
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False) | |
# Filter out manufacturers with 0 units | |
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0] | |
# If we have less than 3 non-zero manufacturers, add some zero-value ones | |
if len(non_zero_manufacturers) < 3: | |
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers)) | |
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers]) | |
else: | |
manufacturers_to_show = non_zero_manufacturers | |
values = manufacturers_to_show['units'].tolist() | |
amounts = manufacturers_to_show['sales'].tolist() | |
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index] | |
st.write(f"### Results for top {len(manufacturers)} manufacturers:") | |
for manufacturer, value, amount in zip(manufacturers, values, amounts): | |
st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales") | |
if manufacturers: # Only create the chart if we have data | |
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}') | |
st.pyplot(fig) | |
else: | |
st.warning("No data available to create the radar chart.") | |
# Customer sales 2021-2024 (if data exists) | |
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024'] | |
if all(col in df.columns for col in sales_columns): | |
years = ['2021', '2022', '2023', '2024'] | |
customer_sales = customer_data[sales_columns].values[0] | |
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}') | |
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales") | |
st.plotly_chart(fig_sales) | |
else: | |
st.warning("Sales data for 2021-2024 not available.") | |
else: | |
st.warning(f"No data found for customer {customer_code}. Please check the code.") | |
else: | |
st.warning("Please select a customer.") | |
# Customer Recommendations Page | |
elif page == "Articles Recommendations": | |
st.title("Articles Recommendations") | |
st.markdown(""" | |
Get tailored recommendations for your customers based on their basket. | |
""") | |
# Campo input para cliente | |
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)") | |
if partial_code: | |
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)] | |
else: | |
filtered_customers = df | |
customer_list = filtered_customers['CLIENTE'].unique() | |
customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list)) | |
# Definición de la función recomienda | |
def recomienda(new_basket): | |
# Calcular la matriz TF-IDF | |
tfidf = TfidfVectorizer() | |
tfidf_matrix = tfidf.fit_transform(cestas['Cestas']) | |
# Convertir la nueva cesta en formato TF-IDF | |
new_basket_str = ' '.join(new_basket) | |
new_basket_tfidf = tfidf.transform([new_basket_str]) | |
# Comparar la nueva cesta con las anteriores | |
similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix) | |
# Obtener los índices de las cestas más similares | |
similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares | |
# Crear un diccionario para contar las recomendaciones | |
recommendations_count = {} | |
total_similarity = 0 | |
# Recomendar productos de cestas similares | |
for idx in similar_indices: | |
sim_score = similarities[0][idx] | |
total_similarity += sim_score | |
products = cestas.iloc[idx]['Cestas'].split() | |
for product in products: | |
if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta | |
if product.strip() in recommendations_count: | |
recommendations_count[product.strip()] += sim_score | |
else: | |
recommendations_count[product.strip()] = sim_score | |
# Calcular la probabilidad relativa de cada producto recomendado | |
recommendations_with_prob = [] | |
if total_similarity > 0: # Verificar que total_similarity no sea cero | |
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()] | |
else: | |
print("No se encontraron similitudes suficientes para calcular probabilidades.") | |
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación | |
# Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades | |
recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD']) | |
# Agregar las recomendaciones al DataFrame usando pd.concat | |
for product, prob in recommendations_with_prob: | |
# Buscar la descripción en el DataFrame de productos | |
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION'] | |
if not description.empty: | |
# Crear un nuevo DataFrame temporal para la recomendación | |
temp_df = pd.DataFrame({ | |
'ARTICULO': [product], | |
'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado | |
'PROBABILIDAD': [prob] | |
}) | |
# Concatenar el DataFrame temporal al DataFrame de recomendaciones | |
recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True) | |
return recommendations_df | |
# Comprobar si el cliente está en el CSV de fieles | |
is_fiel = customer_code in fieles_df['Cliente'].astype(str).values | |
if customer_code: | |
if is_fiel: | |
st.write(f"### Customer {customer_code} is a loyal customer.") | |
option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"]) | |
if option == "By Purchase History": | |
st.warning("Option not available... aún") | |
elif option == "By Current Basket": | |
st.write("Enter the items in the basket:") | |
# Input para los artículos y unidades | |
items = st.text_input("Enter items (comma-separated):").split(',') | |
quantities = st.text_input("Enter quantities (comma-separated):").split(',') | |
if st.button("Calcular"): # Añadimos el botón "Calcular" | |
# Crear una lista de artículos basada en la entrada | |
new_basket = [item.strip() for item in items] | |
# Asegurarse de que las longitudes de artículos y cantidades coincidan | |
if len(new_basket) == len(quantities): | |
# Procesar la lista para recomendar | |
recommendations_df = recomienda(new_basket) | |
if not recommendations_df.empty: | |
st.write("### Recommendations based on the current basket:") | |
st.dataframe(recommendations_df) | |
else: | |
st.warning("No recommendations found for the provided basket.") | |
else: | |
st.warning("The number of items must match the number of quantities.") | |
else: | |
st.write(f"### Customer {customer_code} is not a loyal customer.") | |
st.write("Recommendation based on the basket. Please enter the items:") | |
# Input para los artículos y unidades | |
items = st.text_input("Enter items (comma-separated):").split(',') | |
quantities = st.text_input("Enter quantities (comma-separated):").split(',') | |
if st.button("Calcular"): # Añadimos el botón "Calcular" | |
# Crear una lista de artículos basada en la entrada | |
new_basket = [item.strip() for item in items] | |
# Asegurarse de que las longitudes de artículos y cantidades coincidan | |
if len(new_basket) == len(quantities): | |
# Procesar la lista para recomendar | |
recommendations_df = recomienda(new_basket) | |
if not recommendations_df.empty: | |
st.write("### Recommendations based on the current basket:") | |
st.dataframe(recommendations_df) | |
else: | |
st.warning("No recommendations found for the provided basket.") | |
else: | |
st.warning("The number of items must match the number of quantities.") |