Final_Project / app.py
GMARTINEZMILLA's picture
feat: updated app.py
9db7393
raw
history blame
37.5 kB
import streamlit as st
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
import numpy as np
import lightgbm as lgb
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import mean_absolute_error, mean_squared_error
from joblib import dump, load
# Page configuration
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
# Load CSV files at the top
df = pd.read_csv("df_clean.csv")
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
customer_clusters = pd.read_csv('predicts/customer_clusters.csv') # Load the customer clusters here
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
# Ensure customer codes are strings
df['CLIENTE'] = df['CLIENTE'].astype(str)
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str) # Ensure customer IDs are strings
fieles_df = pd.read_csv("clientes_relevantes.csv")
cestas = pd.read_csv("cestas.csv")
productos = pd.read_csv("productos.csv")
df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
# Convert all columns except 'CLIENTE' to float in euros_proveedor
for col in euros_proveedor.columns:
if col != 'CLIENTE':
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
# Check for NaN values after conversion
if euros_proveedor.isna().any().any():
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
# Ignore the last two columns of df
df = df.iloc[:, :-2]
# Function to get supplier name
def get_supplier_name(code):
code = str(code) # Ensure code is a string
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
return name[0] if len(name) > 0 else code
# Function to create radar chart with square root transformation
def radar_chart(categories, values, amounts, title):
N = len(categories)
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
# Apply square root transformation
sqrt_values = np.sqrt(values)
sqrt_amounts = np.sqrt(amounts)
max_sqrt_value = max(sqrt_values)
normalized_values = [v / max_sqrt_value for v in sqrt_values]
# Adjust scaling for spend values
max_sqrt_amount = max(sqrt_amounts)
scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
normalized_values += normalized_values[:1]
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
normalized_amounts += normalized_amounts[:1]
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, size=8, wrap=True)
ax.set_ylim(0, 1)
circles = np.linspace(0, 1, 5)
for circle in circles:
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False)
plt.title(title, size=16, y=1.1)
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
return fig
# Main page design
st.title("Welcome to Customer Insights App")
st.markdown("""
This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
Use the tools below to dive deeper into your customer data.
""")
# Navigation menu
page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"])
# Home Page
if page == "":
st.markdown("## Welcome to the Customer Insights App")
st.write("Use the dropdown menu to navigate between the different sections.")
# Customer Analysis Page
elif page == "Customer Analysis":
st.title("Customer Analysis")
st.markdown("Use the tools below to explore your customer data.")
partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
customer_list = filtered_customers['CLIENTE'].unique()
customer_code = st.selectbox("Select Customer Code", customer_list)
if st.button("Calcular"):
if customer_code:
# Find Customer's Cluster
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
if not customer_match.empty:
cluster = customer_match['cluster_id'].values[0]
st.write(f"Customer {customer_code} belongs to cluster {cluster}")
# Load the Corresponding Model
model_path = f'models/modelo_cluster_{cluster}.txt'
gbm = lgb.Booster(model_file=model_path)
st.write(f"Loaded model for cluster {cluster}")
# Inspect the model
st.write("### Model Information:")
st.write(f"Number of trees: {gbm.num_trees()}")
st.write(f"Number of features: {gbm.num_feature()}")
st.write("Feature names:")
st.write(gbm.feature_name())
# Load predict data for that cluster
predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
# Convert cliente_id to string
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
st.write("### Predict Data DataFrame:")
st.write(predict_data.head())
st.write(f"Shape: {predict_data.shape}")
# Filter for the specific customer
customer_code_str = str(customer_code)
customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
# Add debug statements
st.write(f"Unique customer IDs in predict data: {predict_data['cliente_id'].unique()}")
st.write(f"Customer code we're looking for: {customer_code_str}")
st.write("### Customer Data:")
st.write(customer_data.head())
st.write(f"Shape: {customer_data.shape}")
if not customer_data.empty:
# Define features consistently with the training process
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
# Prepare data for prediction
X_predict = customer_data[features]
# Convert categorical features to 'category' dtype
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
for feature in categorical_features:
X_predict[feature] = X_predict[feature].astype('category')
st.write("### Features for Prediction:")
st.write(X_predict.head())
st.write(f"Shape: {X_predict.shape}")
st.write("Data types:")
st.write(X_predict.dtypes)
# Make Prediction for the selected customer
y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
st.write("### Prediction Results:")
st.write(f"Type of y_pred: {type(y_pred)}")
st.write(f"Shape of y_pred: {y_pred.shape}")
st.write("First few predictions:")
st.write(y_pred[:5])
# Reassemble the results
results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
results['ventas_predichas'] = y_pred
st.write("### Results DataFrame:")
st.write(results.head())
st.write(f"Shape: {results.shape}")
st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
# Load actual data
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
st.write("### Actual Sales DataFrame:")
st.write(actual_sales.head())
st.write(f"Shape: {actual_sales.shape}")
if not actual_sales.empty:
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
how='left')
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
results['ventas_reales'].fillna(0, inplace=True)
st.write("### Final Results DataFrame:")
st.write(results.head())
st.write(f"Shape: {results.shape}")
# Calculate metrics only for non-null actual sales
valid_results = results.dropna(subset=['ventas_reales'])
if not valid_results.empty:
mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
st.write(f"MAE: {mae:.2f}")
st.write(f"MAPE: {mape:.2f}%")
st.write(f"RMSE: {rmse:.2f}")
# Analysis of results
threshold_good = 100 # You may want to adjust this threshold
if mae < threshold_good:
st.success(f"Customer {customer_code} is performing well based on the predictions.")
else:
st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
else:
st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
st.write("### Debug Information for Radar Chart:")
st.write(f"Shape of customer_data: {customer_data.shape}")
st.write(f"Shape of euros_proveedor: {euros_proveedor.shape}")
# Get percentage of units sold for each manufacturer
customer_df = df[df["CLIENTE"] == str(customer_code)] # Get the customer data
all_manufacturers = customer_df.iloc[:, 1:].T # Exclude CLIENTE column (manufacturers are in columns)
all_manufacturers.index = all_manufacturers.index.astype(str)
# Get total sales for each manufacturer from euros_proveedor
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
sales_data.index = sales_data.index.astype(str)
# Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
# Ensure all values are numeric
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
# Sort manufacturers by percentage of units and get top 10
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
# Sort manufacturers by total sales and get top 10
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
# Combine top manufacturers from both lists and get up to 20 unique manufacturers
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
# Filter out manufacturers that are not present in both datasets
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
st.write(f"Number of combined top manufacturers: {len(combined_top)}")
if combined_top:
# Create a DataFrame with combined data for these top manufacturers
combined_data = pd.DataFrame({
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
}).fillna(0)
# Sort by units, then by sales
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
# Filter out manufacturers with 0 units
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
# If we have less than 3 non-zero manufacturers, add some zero-value ones
if len(non_zero_manufacturers) < 3:
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
else:
manufacturers_to_show = non_zero_manufacturers
values = manufacturers_to_show['units'].tolist()
amounts = manufacturers_to_show['sales'].tolist()
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
st.write(f"### Results for top {len(manufacturers)} manufacturers:")
for manufacturer, value, amount in zip(manufacturers, values, amounts):
st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
if manufacturers: # Only create the chart if we have data
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
st.pyplot(fig)
else:
st.warning("No data available to create the radar chart.")
else:
st.warning("No combined top manufacturers found.")
# Ensure codigo_cliente in ventas_clientes is a string
ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip()
# Ensure customer_code is a string and strip any spaces
customer_code = str(customer_code).strip()
if customer_code in ventas_clientes['codigo_cliente'].unique():
st.write(f"Customer {customer_code} found in ventas_clientes")
else:
st.write(f"Customer {customer_code} not found in ventas_clientes")
# Customer sales 2021-2024 (if data exists)
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
if all(col in ventas_clientes.columns for col in sales_columns):
customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
if not customer_sales_data.empty:
customer_sales = customer_sales_data[sales_columns].values[0]
years = ['2021', '2022', '2023']
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
st.plotly_chart(fig_sales)
else:
st.warning(f"No historical sales data found for customer {customer_code}")
else:
st.warning("Sales data for 2021-2023 not available in the dataset.")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")
else:
st.warning("Please select a customer.")
def recomienda_tfid(new_basket):
cestas = pd.read_csv('../data/processed/cestas.csv')
productos = pd.read_csv('../data/processed/productos.csv')
# Cargar la matriz TF-IDF y el modelo
tfidf_matrix = load('../models/tfidf_matrix.joblib')
# MAtriz que tienen cada columna los diferentes artículos y las diferentes cestas en las filas
# Los valores son la importancia de cada artículo en la cesta según las veces que aparece en la misma y el total de artículos
tfidf = load('../models/tfidf_model.joblib')
# Convertir la nueva cesta en formato TF-IDF
new_basket_str = ' '.join(new_basket)
new_basket_tfidf = tfidf.transform([new_basket_str])
# Comparar la nueva cesta con las anteriores
# Calculando la distancia coseoidal, distancia entre rectas
similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
# La similitud coseno devuelve un valor entre 0 y 1, donde 1 significa
# que las cestas son idénticas en términos de productos y 0 que no comparten ningún producto.
# Obtener los índices de las cestas más similares
# Muestra los índices de Las 3 cestas más parecidas atendiendo a la distancia calculada anteriormente
similar_indices = similarities.argsort()[0][-4:] # Las 3 más similares
# Crear un diccionario para contar las recomendaciones
recommendations_count = {}
total_similarity = 0
# Recomendar productos de cestas similares
for idx in similar_indices:
sim_score = similarities[0][idx]
# sim_score es el valor de similitud de la cesta actual con la cesta similar.
total_similarity += sim_score # Suma de las similitudes entre 0 y el nº de cestas similares
products = cestas.iloc[idx]['Cestas'].split()
for product in products:
if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score
# se utiliza para incrementar el conteo del producto en recommendations_count.
# almacena el conteo de la relevancia de cada producto basado en cuántas veces aparece en las cestas similares, ponderado por la similitud de cada cesta.
# sumandole sim_score se incrementa el score cuando la cesta es mas similar
# Calcular la probabilidad relativa de cada producto recomendado
recommendations_with_prob = []
if total_similarity > 0: # Verificar que total_similarity no sea cero
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
# Se guarda cada producto junto su score calculada
else:
print("No se encontraron similitudes suficientes para calcular probabilidades.")
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación
# Crear un nuevo DataFrame para almacenar las recomendaciones
recommendations_data = []
for product, score in recommendations_with_prob:
# Buscar la descripción en el DataFrame de productos
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
if not description.empty:
recommendations_data.append({
'ARTICULO': product,
'DESCRIPCION': description.values[0], # Obtener el primer valor encontrado
'RELEVANCIA': score
})
recommendations_df = pd.DataFrame(recommendations_data)
return recommendations_df
# # Customer Recommendations Page
# elif page == "Articles Recommendations":
# st.title("Articles Recommendations")
# st.markdown("""
# Get tailored recommendations for your customers based on their basket.
# """)
# # Campo input para cliente
# partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
# if partial_code:
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
# else:
# filtered_customers = df
# customer_list = filtered_customers['CLIENTE'].unique()
# customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
# # Definición de la función recomienda
# def recomienda(new_basket):
# # Calcular la matriz TF-IDF
# tfidf = TfidfVectorizer()
# tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
# # Convertir la nueva cesta en formato TF-IDF
# new_basket_str = ' '.join(new_basket)
# new_basket_tfidf = tfidf.transform([new_basket_str])
# # Comparar la nueva cesta con las anteriores
# similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
# # Obtener los índices de las cestas más similares
# similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares
# # Crear un diccionario para contar las recomendaciones
# recommendations_count = {}
# total_similarity = 0
# # Recomendar productos de cestas similares
# for idx in similar_indices:
# sim_score = similarities[0][idx]
# total_similarity += sim_score
# products = cestas.iloc[idx]['Cestas'].split()
# for product in products:
# if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
# if product.strip() in recommendations_count:
# recommendations_count[product.strip()] += sim_score
# else:
# recommendations_count[product.strip()] = sim_score
# # Calcular la probabilidad relativa de cada producto recomendado
# recommendations_with_prob = []
# if total_similarity > 0: # Verificar que total_similarity no sea cero
# recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
# else:
# print("No se encontraron similitudes suficientes para calcular probabilidades.")
# recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación
# # Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
# recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])
# # Agregar las recomendaciones al DataFrame usando pd.concat
# for product, prob in recommendations_with_prob:
# # Buscar la descripción en el DataFrame de productos
# description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
# if not description.empty:
# # Crear un nuevo DataFrame temporal para la recomendación
# temp_df = pd.DataFrame({
# 'ARTICULO': [product],
# 'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado
# 'PROBABILIDAD': [prob]
# })
# # Concatenar el DataFrame temporal al DataFrame de recomendaciones
# recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)
# return recommendations_df
# # Comprobar si el cliente está en el CSV de fieles
# is_fiel = customer_code in fieles_df['Cliente'].astype(str).values
# if customer_code:
# if is_fiel:
# st.write(f"### Customer {customer_code} is a loyal customer.")
# option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
# if option == "By Purchase History":
# st.warning("Option not available... aún")
# elif option == "By Current Basket":
# st.write("Select the items and assign quantities for the basket:")
# # Mostrar lista de artículos disponibles
# available_articles = productos['ARTICULO'].unique()
# selected_articles = st.multiselect("Select Articles", available_articles)
# # Crear inputs para ingresar las cantidades de cada artículo seleccionado
# quantities = {}
# for article in selected_articles:
# quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
# if st.button("Calcular"): # Añadimos el botón "Calcular"
# # Crear una lista de artículos basada en la selección
# new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
# if new_basket:
# # Procesar la lista para recomendar
# recommendations_df = recomienda(new_basket)
# if not recommendations_df.empty:
# st.write("### Recommendations based on the current basket:")
# st.dataframe(recommendations_df)
# else:
# st.warning("No recommendations found for the provided basket.")
# else:
# st.warning("Please select at least one article and set its quantity.")
# else:
# st.write(f"### Customer {customer_code} is not a loyal customer.")
# st.write("Select items and assign quantities for the basket:")
# # Mostrar lista de artículos disponibles
# available_articles = productos['ARTICULO'].unique()
# selected_articles = st.multiselect("Select Articles", available_articles)
# # Crear inputs para ingresar las cantidades de cada artículo seleccionado
# quantities = {}
# for article in selected_articles:
# quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
# if st.button("Calcular"): # Añadimos el botón "Calcular"
# # Crear una lista de artículos basada en la selección
# new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
# if new_basket:
# # Procesar la lista para recomendar
# recommendations_df = recomienda(new_basket)
# if not recommendations_df.empty:
# st.write("### Recommendations based on the current basket:")
# st.dataframe(recommendations_df)
# else:
# st.warning("No recommendations found for the provided basket.")
# else:
# st.warning("Please select at least one article and set its quantity.")
# Customer Analysis Page
# elif page == "Customer Analysis":
# st.title("Customer Analysis")
# st.markdown("Use the tools below to explore your customer data.")
# partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
# if partial_code:
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
# else:
# filtered_customers = df
# customer_list = filtered_customers['CLIENTE'].unique()
# customer_code = st.selectbox("Select Customer Code", customer_list)
# if st.button("Calcular"):
# if customer_code:
# # Find Customer's Cluster
# customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
# if not customer_match.empty:
# cluster = customer_match['cluster_id'].values[0]
# st.write(f"Customer {customer_code} belongs to cluster {cluster}")
# # Load the Corresponding Model
# model_path = f'models/modelo_cluster_{cluster}.txt'
# gbm = lgb.Booster(model_file=model_path)
# st.write(f"Loaded model for cluster {cluster}")
# # Load X_predict for that cluster
# X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv')
# # Filter for the specific customer
# X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code]
# if not X_cliente.empty:
# # Prepare data for prediction
# features_for_prediction = X_cliente.drop(columns=['cliente_id', 'fecha_mes'])
# # Make Prediction for the selected customer
# y_pred = gbm.predict(features_for_prediction, num_iteration=gbm.best_iteration)
# # Reassemble the results
# results = X_cliente[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
# results['ventas_predichas'] = y_pred
# st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
# # Load actual data
# df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
# actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code]
# if not actual_sales.empty:
# results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
# on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
# how='left')
# results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
# # Calculate metrics only for non-null actual sales
# valid_results = results.dropna(subset=['ventas_reales'])
# if not valid_results.empty:
# mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
# mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
# rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
# st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
# st.write(f"MAE: {mae:.2f}")
# st.write(f"MAPE: {mape:.2f}%")
# st.write(f"RMSE: {rmse:.2f}")
# # Analysis of results
# threshold_good = 100 # You may want to adjust this threshold
# if mae < threshold_good:
# st.success(f"Customer {customer_code} is performing well based on the predictions.")
# else:
# st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
# else:
# st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
# # Show the radar chart
# all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column
# all_manufacturers.index = all_manufacturers.index.astype(str)
# sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
# sales_data.index = sales_data.index.astype(str)
# sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
# sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
# top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
# top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
# combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
# combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
# combined_data = pd.DataFrame({
# 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
# 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
# }).fillna(0)
# combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
# non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
# if len(non_zero_manufacturers) < 3:
# zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
# manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
# else:
# manufacturers_to_show = non_zero_manufacturers
# values = manufacturers_to_show['units'].tolist()
# amounts = manufacturers_to_show['sales'].tolist()
# manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
# st.write(f"### Results for top {len(manufacturers)} manufacturers:")
# for manufacturer, value, amount in zip(manufacturers, values, amounts):
# st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
# if manufacturers:
# fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
# st.pyplot(fig)
# else:
# st.warning("No data available to create the radar chart.")
# # Show sales over the years graph
# sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
# if all(col in ventas_clientes.columns for col in sales_columns):
# years = ['2021', '2022', '2023']
# customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0]
# fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
# fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
# st.plotly_chart(fig_sales)
# else:
# st.warning("Sales data for 2021-2023 not available.")
# else:
# st.warning(f"No prediction data found for customer {customer_code}.")
# else:
# st.warning(f"No data found for customer {customer_code}. Please check the code.")
# else:
# st.warning("Please select a customer.")