Final_Project / app.py
GMARTINEZMILLA's picture
feat: generated files
accd0d7
raw
history blame
7.73 kB
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
# Configuraci贸n de la p谩gina principal
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
# Cargar el archivo CSV que ya est谩 disponible en la web
df = pd.read_csv("df_clean.csv") # Aseg煤rate de que la ruta del archivo es correcta
# Ignorar las dos 煤ltimas columnas
df = df.iloc[:, :-2]
# Asegurarse de que el c贸digo del cliente sea una cadena (string)
df['CLIENTE'] = df['CLIENTE'].astype(str)
# Dise帽o de la p谩gina principal
st.title("Welcome to Customer Insights App")
st.markdown("""
This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
Use the tools below to dive deeper into your customer data.
""")
# Men煤 de navegaci贸n
page = st.selectbox("Selecciona la herramienta que quieres utilizar", ["", "Customer Analysis", "Customer Recommendations"])
# P谩gina Home
if page == "":
st.markdown("## Welcome to the Customer Insights App")
st.write("Use the dropdown menu to navigate between the different sections.")
# P谩gina Customer Analysis
elif page == "Customer Analysis":
st.title("Customer Analysis")
st.markdown("""
Use the tools below to explore your customer data.
""")
# Campo para filtrar clientes
partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
# Filtrar las opciones de clientes que coincidan con el c贸digo parcial
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
# Crear una lista de clientes filtrados para el selectbox
customer_list = filtered_customers['CLIENTE'].unique()
# Selecci贸n de cliente con autocompletar filtrado
customer_code = st.selectbox("Select Customer Code", customer_list)
if customer_code:
# Filtrar datos para el cliente seleccionado
customer_data = df[df["CLIENTE"] == customer_code]
if not customer_data.empty:
st.write(f"### Analysis for Customer {customer_code}")
# Obtener las 6 columnas con los valores m谩s altos (ignorar la columna de cliente)
top_6_manufacturers = customer_data.iloc[:, 1:].T.nlargest(6, customer_data.index[0])
# Ordenar los fabricantes por valor descendente para mejor visualizaci贸n
top_6_manufacturers = top_6_manufacturers.sort_values(by=customer_data.index[0], ascending=False)
# Preparar los valores y fabricantes
values = top_6_manufacturers[customer_data.index[0]].values.tolist()
manufacturers = top_6_manufacturers.index.tolist()
# Mostrar los resultados de cada fabricante
st.write("### Resultados porcentaje fabricante (ordenados):")
for manufacturer, value in zip(manufacturers, values):
st.write(f"{manufacturer} = {value:.4f}")
# Normalizar los valores para que sumen 1
total = sum(values)
values = [v / total for v in values]
# Crear el gr谩fico de radar
fig = go.Figure()
# Add the data trace (pink line)
fig.add_trace(go.Scatterpolar(
r=values + values[:1], # Repeat first value to close the polygon
theta=manufacturers + manufacturers[:1],
fill='toself',
fillcolor='rgba(255, 105, 180, 0.2)', # Light pink fill
line=dict(color='rgb(255, 105, 180)', width=2), # Pink line
mode='lines+markers',
marker=dict(size=8, color='rgb(255, 105, 180)') # Pink markers
))
# Add the outer boundary (blue line)
fig.add_trace(go.Scatterpolar(
r=[1]*len(manufacturers) + [1], # A list of 1's to create the outer boundary
theta=manufacturers + manufacturers[:1],
mode='lines',
line=dict(color='rgb(100, 149, 237)', width=2), # Cornflower blue
showlegend=False
))
# Update the layout
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1],
showline=False,
showticklabels=False,
),
angularaxis=dict(
showline=True,
linecolor='rgb(192, 192, 192)', # Light gray
tickcolor='rgb(192, 192, 192)',
),
gridshape='circular',
),
showlegend=False,
paper_bgcolor='white',
plot_bgcolor='white',
)
# Add radial grid lines
for i in range(1, 5): # 4 concentric circles
fig.add_shape(
type="circle",
xref="x", yref="y",
x0=-i/4, y0=-i/4, x1=i/4, y1=i/4,
line=dict(color="rgb(192, 192, 192)", width=1),
)
# Show the plot in Streamlit
st.plotly_chart(fig)
# Ventas del cliente 2021-2024 (si los datos existen)
if 'VENTA_2021' in df.columns and 'VENTA_2022' in df.columns and 'VENTA_2023' in df.columns and 'VENTA_2024' in df.columns:
years = ['2021', '2022', '2023', '2024']
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024']
customer_sales = customer_data[sales_columns].values[0]
fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
st.plotly_chart(fig_sales)
else:
st.warning("Sales data for 2021-2024 not available.")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")
# P谩gina Customer Recommendations
elif page == "Customer Recommendations":
st.title("Customer Recommendations")
st.markdown("""
Get tailored recommendations for your customers based on their purchasing history.
""")
# Campo para filtrar clientes
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
# Filtrar las opciones de clientes que coincidan con el c贸digo parcial
if partial_code:
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
else:
filtered_customers = df
# Crear una lista de clientes filtrados para el selectbox
customer_list = filtered_customers['CLIENTE'].unique()
# Selecci贸n de cliente con autocompletar filtrado
customer_code = st.selectbox("Select Customer Code for Recommendations", customer_list)
if customer_code:
customer_data = df[df["CLIENTE"] == customer_code]
if not customer_data.empty:
# Mostrar historial de compras del cliente seleccionado
st.write(f"### Purchase History for Customer {customer_code}")
st.write(customer_data)
# Generar recomendaciones (placeholder)
st.write(f"### Recommended Products for Customer {customer_code}")
# Aqu铆 puedes reemplazar con la l贸gica del modelo de recomendaci贸n
st.write("Product A, Product B, Product C")
else:
st.warning(f"No data found for customer {customer_code}. Please check the code.")