Final_Project / customer_recommendation.py
GMARTINEZMILLA's picture
feat: generated files
2c1bfb4
raw
history blame
852 Bytes
import streamlit as st
import pandas as pd
st.set_page_config(page_title="Customer Recommendations", page_icon=":chart_with_upwards_trend:")
st.title("Customer Recommendations")
st.markdown("""
Get tailored recommendations for your customers based on their purchasing history.
""")
# Cargar los datos
uploaded_file = st.file_uploader("Upload your CSV file", type="csv")
if uploaded_file:
df = pd.read_csv(uploaded_file)
customer_id = st.selectbox("Select a Customer", df["CLIENTE"].unique())
# Mostrar datos y recomendación
st.write(f"### Purchase History for Customer {customer_id}")
customer_data = df[df["CLIENTE"] == customer_id]
st.write(customer_data)
# Generar recomendaciones (placeholder)
st.write(f"### Recommended Products for Customer {customer_id}")
st.write("Product A, Product B, Product C")