Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
import numpy as np | |
import warnings | |
warnings.filterwarnings('ignore') | |
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from joblib import dump, load | |
from sklearn.preprocessing import normalize | |
import re | |
def get_next_version(file_prefix, folder='RecommendationFiles/'): | |
"""Find the latest version of a file and return the next version's filename.""" | |
if not os.path.exists(folder): | |
os.makedirs(folder) # Ensure the folder exists | |
# Regular expression to match files like 'file_0001.joblib' | |
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib") | |
files = [f for f in os.listdir(folder) if pattern.match(f)] | |
# Extract version numbers from matching files | |
versions = [int(pattern.match(f).group(1)) for f in files] | |
# Determine the next version number | |
next_version = max(versions) + 1 if versions else 1 | |
# Return the next version filename with the folder path | |
return os.path.join(folder, f"{file_prefix}_{next_version:04d}.joblib") | |
def get_latest_version(file_prefix, folder='RecommendationFiles/'): | |
"""Find the latest version of a file to load.""" | |
if not os.path.exists(folder): | |
raise FileNotFoundError(f"Folder '{folder}' does not exist") | |
# Regular expression to match files like 'file_0001.joblib' | |
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib") | |
files = [f for f in os.listdir(folder) if pattern.match(f)] | |
# Extract version numbers from matching files | |
versions = [int(pattern.match(f).group(1)) for f in files] | |
if versions: | |
latest_version = max(versions) | |
return os.path.join(folder, f"{file_prefix}_{latest_version:04d}.joblib") | |
else: | |
raise FileNotFoundError(f"No versions found for {file_prefix} in folder '{folder}'") | |
def recomienda_tf(new_basket, cestas, productos): | |
# Get the latest versions of the matrix and vectorizer from the folder | |
tf_matrix_file = get_latest_version('count_matrix') | |
count_vectorizer_file = get_latest_version('count_vectorizer') | |
# Load the matrix TF and the vectorizer | |
tf_matrix = load(tf_matrix_file) | |
count = load(count_vectorizer_file) | |
# Convert the new basket into TF (Term Frequency) format | |
new_basket_str = ' '.join(new_basket) | |
new_basket_vector = count.transform([new_basket_str]) | |
new_basket_tf = normalize(new_basket_vector, norm='l1') # Normalize the count matrix for the current basket | |
# Compare the new basket with previous ones | |
similarities = cosine_similarity(new_basket_tf, tf_matrix) | |
# Get the indices of the most similar baskets | |
similar_indices = similarities.argsort()[0][-4:] # Top 4 most similar baskets | |
# Create a dictionary to count recommendations | |
recommendations_count = {} | |
total_similarity = 0 | |
# Recommend products from similar baskets | |
for idx in similar_indices: | |
sim_score = similarities[0][idx] | |
total_similarity += sim_score # Sum of similarities | |
products = cestas.iloc[idx]['Cestas'].split() | |
unique_products = set(products) # Use a set to get unique products | |
for product in unique_products: | |
if product.strip() not in new_basket: # Avoid recommending items already in the basket | |
recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score | |
# Calculate the relative probability of each recommended product | |
recommendations_with_prob = [] | |
if total_similarity > 0: | |
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()] | |
else: | |
print("No se encontraron similitudes suficientes para calcular probabilidades.") | |
# Sort recommendations by relevance score | |
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) | |
# Create a new DataFrame to store recommendations | |
recommendations_data = [] | |
for product, score in recommendations_with_prob: | |
# Search for the product description in the products DataFrame | |
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION'] | |
if not description.empty: | |
recommendations_data.append({ | |
'ARTICULO': product, | |
'DESCRIPCION': description.values[0], | |
'RELEVANCIA': score | |
}) | |
recommendations_df = pd.DataFrame(recommendations_data) | |
return recommendations_df.head(5) | |
def retroalimentacion(cestas, cesta_nueva): | |
# Convert basket from list to string | |
cesta_unida = ' '.join(cesta_nueva) | |
# Add the new basket to the historical baskets if it doesn't already exist | |
if not cestas['Cestas'].isin([cesta_unida]).any(): | |
cestas.loc[len(cestas)] = cesta_unida | |
print("Cesta añadida.") | |
# Re-save the updated baskets DataFrame | |
cestas.to_csv('RecommendationFiles/cestas_final.csv', index=False) | |
else: | |
print("La cesta ya existe en el DataFrame.") | |
# Re-vectorize the basket DataFrame | |
count_vectorizer = CountVectorizer() | |
count_vectorizer.fit(cestas['Cestas']) | |
count_matrix = count_vectorizer.transform(cestas['Cestas']) | |
tf_matrix = normalize(count_matrix, norm='l1') | |
# Save new versions of the vectorizer and matrix | |
count_vectorizer_file = get_next_version('count_vectorizer') | |
tf_matrix_file = get_next_version('tf_matrix') | |
dump(count_vectorizer, count_vectorizer_file) | |
dump(tf_matrix, tf_matrix_file) | |
return None | |