Final_Project / utils.py
GMARTINEZMILLA's picture
fixed error utils
69daf75 verified
import os
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from joblib import dump, load
from sklearn.preprocessing import normalize
import re
def get_next_version(file_prefix, folder='RecommendationFiles/'):
"""Find the latest version of a file and return the next version's filename."""
if not os.path.exists(folder):
os.makedirs(folder) # Ensure the folder exists
# Regular expression to match files like 'file_0001.joblib'
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
files = [f for f in os.listdir(folder) if pattern.match(f)]
# Extract version numbers from matching files
versions = [int(pattern.match(f).group(1)) for f in files]
# Determine the next version number
next_version = max(versions) + 1 if versions else 1
# Return the next version filename with the folder path
return os.path.join(folder, f"{file_prefix}_{next_version:04d}.joblib")
def get_latest_version(file_prefix, folder='RecommendationFiles/'):
"""Find the latest version of a file to load."""
if not os.path.exists(folder):
raise FileNotFoundError(f"Folder '{folder}' does not exist")
# Regular expression to match files like 'file_0001.joblib'
pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib")
files = [f for f in os.listdir(folder) if pattern.match(f)]
# Extract version numbers from matching files
versions = [int(pattern.match(f).group(1)) for f in files]
if versions:
latest_version = max(versions)
return os.path.join(folder, f"{file_prefix}_{latest_version:04d}.joblib")
else:
raise FileNotFoundError(f"No versions found for {file_prefix} in folder '{folder}'")
def recomienda_tf(new_basket, cestas, productos):
# Get the latest versions of the matrix and vectorizer from the folder
tf_matrix_file = get_latest_version('count_matrix')
count_vectorizer_file = get_latest_version('count_vectorizer')
# Load the matrix TF and the vectorizer
tf_matrix = load(tf_matrix_file)
count = load(count_vectorizer_file)
# Convert the new basket into TF (Term Frequency) format
new_basket_str = ' '.join(new_basket)
new_basket_vector = count.transform([new_basket_str])
new_basket_tf = normalize(new_basket_vector, norm='l1') # Normalize the count matrix for the current basket
# Compare the new basket with previous ones
similarities = cosine_similarity(new_basket_tf, tf_matrix)
# Get the indices of the most similar baskets
similar_indices = similarities.argsort()[0][-4:] # Top 4 most similar baskets
# Create a dictionary to count recommendations
recommendations_count = {}
total_similarity = 0
# Recommend products from similar baskets
for idx in similar_indices:
sim_score = similarities[0][idx]
total_similarity += sim_score # Sum of similarities
products = cestas.iloc[idx]['Cestas'].split()
unique_products = set(products) # Use a set to get unique products
for product in unique_products:
if product.strip() not in new_basket: # Avoid recommending items already in the basket
recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score
# Calculate the relative probability of each recommended product
recommendations_with_prob = []
if total_similarity > 0:
recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
else:
print("No se encontraron similitudes suficientes para calcular probabilidades.")
# Sort recommendations by relevance score
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True)
# Create a new DataFrame to store recommendations
recommendations_data = []
for product, score in recommendations_with_prob:
# Search for the product description in the products DataFrame
description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
if not description.empty:
recommendations_data.append({
'ARTICULO': product,
'DESCRIPCION': description.values[0],
'RELEVANCIA': score
})
recommendations_df = pd.DataFrame(recommendations_data)
return recommendations_df.head(5)
def retroalimentacion(cestas, cesta_nueva):
# Convert basket from list to string
cesta_unida = ' '.join(cesta_nueva)
# Add the new basket to the historical baskets if it doesn't already exist
if not cestas['Cestas'].isin([cesta_unida]).any():
cestas.loc[len(cestas)] = cesta_unida
print("Cesta añadida.")
# Re-save the updated baskets DataFrame
cestas.to_csv('RecommendationFiles/cestas_final.csv', index=False)
else:
print("La cesta ya existe en el DataFrame.")
# Re-vectorize the basket DataFrame
count_vectorizer = CountVectorizer()
count_vectorizer.fit(cestas['Cestas'])
count_matrix = count_vectorizer.transform(cestas['Cestas'])
tf_matrix = normalize(count_matrix, norm='l1')
# Save new versions of the vectorizer and matrix
count_vectorizer_file = get_next_version('count_vectorizer')
tf_matrix_file = get_next_version('tf_matrix')
dump(count_vectorizer, count_vectorizer_file)
dump(tf_matrix, tf_matrix_file)
return None