Spaces:
Sleeping
Sleeping
GMARTINEZMILLA
commited on
Commit
•
0cf8b26
1
Parent(s):
13f3bbf
feat: updated app.py
Browse files
app.py
CHANGED
@@ -11,84 +11,59 @@ from sklearn.metrics import mean_absolute_error, mean_squared_error
|
|
11 |
# Page configuration
|
12 |
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
|
13 |
|
14 |
-
# Load CSV files
|
15 |
df = pd.read_csv("df_clean.csv")
|
16 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
17 |
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
|
18 |
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
|
19 |
-
customer_clusters = pd.read_csv('predicts/customer_clusters.csv')
|
20 |
-
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
|
21 |
|
22 |
# Ensure customer codes are strings
|
23 |
df['CLIENTE'] = df['CLIENTE'].astype(str)
|
24 |
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
25 |
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
|
26 |
-
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str)
|
27 |
fieles_df = pd.read_csv("clientes_relevantes.csv")
|
28 |
cestas = pd.read_csv("cestas.csv")
|
29 |
productos = pd.read_csv("productos.csv")
|
30 |
df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
|
31 |
|
32 |
-
# Convert
|
33 |
for col in euros_proveedor.columns:
|
34 |
if col != 'CLIENTE':
|
35 |
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
|
36 |
|
37 |
-
# Check for NaN values
|
38 |
if euros_proveedor.isna().any().any():
|
39 |
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
|
40 |
|
41 |
-
# Ignore the last two columns
|
42 |
df = df.iloc[:, :-2]
|
43 |
|
44 |
# Function to get supplier name
|
45 |
def get_supplier_name(code):
|
46 |
-
code = str(code)
|
47 |
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
|
48 |
return name[0] if len(name) > 0 else code
|
49 |
|
50 |
-
# Function to create radar chart
|
51 |
def radar_chart(categories, values, amounts, title):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
|
68 |
-
normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
|
69 |
-
|
70 |
-
normalized_values += normalized_values[:1]
|
71 |
-
ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
|
72 |
-
ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
|
73 |
-
|
74 |
-
normalized_amounts += normalized_amounts[:1]
|
75 |
-
ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
|
76 |
-
ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
|
77 |
-
|
78 |
-
ax.set_xticks(angles[:-1])
|
79 |
-
ax.set_xticklabels(categories, size=8, wrap=True)
|
80 |
-
ax.set_ylim(0, 1)
|
81 |
-
|
82 |
-
circles = np.linspace(0, 1, 5)
|
83 |
-
for circle in circles:
|
84 |
-
ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
|
85 |
-
|
86 |
-
ax.set_yticklabels([])
|
87 |
-
ax.spines['polar'].set_visible(False)
|
88 |
-
|
89 |
-
plt.title(title, size=16, y=1.1)
|
90 |
-
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
|
91 |
-
|
92 |
return fig
|
93 |
|
94 |
# Main page design
|
@@ -106,6 +81,7 @@ if page == "":
|
|
106 |
st.markdown("## Welcome to the Customer Insights App")
|
107 |
st.write("Use the dropdown menu to navigate between the different sections.")
|
108 |
|
|
|
109 |
elif page == "Customer Analysis":
|
110 |
st.title("Customer Analysis")
|
111 |
st.markdown("Use the tools below to explore your customer data.")
|
@@ -120,368 +96,632 @@ elif page == "Customer Analysis":
|
|
120 |
|
121 |
if st.button("Calcular"):
|
122 |
if customer_code:
|
123 |
-
# Find Customer's Cluster
|
124 |
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
125 |
|
126 |
if not customer_match.empty:
|
127 |
cluster = customer_match['cluster_id'].values[0]
|
128 |
st.write(f"Customer {customer_code} belongs to cluster {cluster}")
|
129 |
|
130 |
-
# Load the
|
131 |
model_path = f'models/modelo_cluster_{cluster}.txt'
|
132 |
gbm = lgb.Booster(model_file=model_path)
|
133 |
st.write(f"Loaded model for cluster {cluster}")
|
134 |
|
135 |
-
# Inspect the model
|
136 |
-
st.write("### Model Information:")
|
137 |
-
st.write(f"Number of trees: {gbm.num_trees()}")
|
138 |
-
st.write(f"Number of features: {gbm.num_feature()}")
|
139 |
-
st.write("Feature names:")
|
140 |
-
st.write(gbm.feature_name())
|
141 |
-
|
142 |
# Load predict data for that cluster
|
143 |
predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
144 |
-
|
145 |
-
# Convert cliente_id to string
|
146 |
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
147 |
-
|
148 |
-
st.write("### Predict Data DataFrame:")
|
149 |
-
st.write(predict_data.head())
|
150 |
-
st.write(f"Shape: {predict_data.shape}")
|
151 |
|
152 |
# Filter for the specific customer
|
153 |
-
|
154 |
-
customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
|
155 |
-
|
156 |
-
# Add debug statements
|
157 |
-
st.write(f"Unique customer IDs in predict data: {predict_data['cliente_id'].unique()}")
|
158 |
-
st.write(f"Customer code we're looking for: {customer_code_str}")
|
159 |
-
|
160 |
-
st.write("### Customer Data:")
|
161 |
-
st.write(customer_data.head())
|
162 |
-
st.write(f"Shape: {customer_data.shape}")
|
163 |
|
164 |
if not customer_data.empty:
|
165 |
-
# Define features consistently with the training process
|
166 |
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
167 |
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
168 |
-
|
169 |
-
# Prepare data for prediction
|
170 |
X_predict = customer_data[features]
|
171 |
|
172 |
# Convert categorical features to 'category' dtype
|
173 |
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
174 |
for feature in categorical_features:
|
175 |
X_predict[feature] = X_predict[feature].astype('category')
|
176 |
-
|
177 |
-
st.write("### Features for Prediction:")
|
178 |
-
st.write(X_predict.head())
|
179 |
-
st.write(f"Shape: {X_predict.shape}")
|
180 |
-
st.write("Data types:")
|
181 |
-
st.write(X_predict.dtypes)
|
182 |
-
|
183 |
# Make Prediction for the selected customer
|
184 |
y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
185 |
-
|
186 |
-
|
187 |
-
st.write(f"Shape of y_pred: {y_pred.shape}")
|
188 |
-
st.write("First few predictions:")
|
189 |
-
st.write(y_pred[:5])
|
190 |
-
|
191 |
-
# Reassemble the results
|
192 |
results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
193 |
results['ventas_predichas'] = y_pred
|
194 |
-
st.write("### Results DataFrame:")
|
195 |
-
st.write(results.head())
|
196 |
-
st.write(f"Shape: {results.shape}")
|
197 |
-
|
198 |
-
st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
|
199 |
|
200 |
-
# Load actual data
|
201 |
-
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] ==
|
202 |
-
st.write("### Actual Sales DataFrame:")
|
203 |
-
st.write(actual_sales.head())
|
204 |
-
st.write(f"Shape: {actual_sales.shape}")
|
205 |
-
|
206 |
if not actual_sales.empty:
|
207 |
-
results = results.merge(
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
211 |
results['ventas_reales'].fillna(0, inplace=True)
|
212 |
-
|
213 |
-
|
214 |
-
st.write(f"Shape: {results.shape}")
|
215 |
-
|
216 |
-
# Calculate metrics only for non-null actual sales
|
217 |
valid_results = results.dropna(subset=['ventas_reales'])
|
218 |
if not valid_results.empty:
|
219 |
mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
|
220 |
mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
|
221 |
rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
|
222 |
|
223 |
-
st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
|
224 |
st.write(f"MAE: {mae:.2f}")
|
225 |
st.write(f"MAPE: {mape:.2f}%")
|
226 |
st.write(f"RMSE: {rmse:.2f}")
|
227 |
|
228 |
-
#
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
|
234 |
-
else:
|
235 |
-
st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
all_manufacturers.index = all_manufacturers.index.astype(str)
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
257 |
|
258 |
-
|
259 |
-
|
260 |
|
261 |
-
|
262 |
-
|
263 |
|
264 |
-
|
265 |
-
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
266 |
|
267 |
-
|
268 |
-
|
269 |
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
-
|
280 |
-
|
281 |
|
282 |
-
|
283 |
-
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
|
288 |
-
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
|
289 |
-
else:
|
290 |
-
manufacturers_to_show = non_zero_manufacturers
|
291 |
|
292 |
-
|
293 |
-
amounts = manufacturers_to_show['sales'].tolist()
|
294 |
-
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
st.pyplot(fig)
|
303 |
-
else:
|
304 |
-
st.warning("No data available to create the radar chart.")
|
305 |
|
306 |
-
|
307 |
-
|
308 |
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
|
313 |
-
|
|
|
314 |
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
st.write(f"Customer {customer_code} not found in ventas_clientes")
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
|
341 |
|
342 |
-
# Customer Recommendations Page
|
343 |
-
elif page == "Articles Recommendations":
|
344 |
-
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
|
427 |
-
|
428 |
-
if option == "By Purchase History":
|
429 |
-
st.warning("Option not available... aún")
|
430 |
-
elif option == "By Current Basket":
|
431 |
-
st.write("Select the items and assign quantities for the basket:")
|
432 |
-
|
433 |
-
# Mostrar lista de artículos disponibles
|
434 |
-
available_articles = productos['ARTICULO'].unique()
|
435 |
-
selected_articles = st.multiselect("Select Articles", available_articles)
|
436 |
-
|
437 |
-
# Crear inputs para ingresar las cantidades de cada artículo seleccionado
|
438 |
-
quantities = {}
|
439 |
-
for article in selected_articles:
|
440 |
-
quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
|
441 |
-
|
442 |
-
if st.button("Calcular"): # Añadimos el botón "Calcular"
|
443 |
-
# Crear una lista de artículos basada en la selección
|
444 |
-
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
|
445 |
-
|
446 |
-
if new_basket:
|
447 |
-
# Procesar la lista para recomendar
|
448 |
-
recommendations_df = recomienda(new_basket)
|
449 |
-
|
450 |
-
if not recommendations_df.empty:
|
451 |
-
st.write("### Recommendations based on the current basket:")
|
452 |
-
st.dataframe(recommendations_df)
|
453 |
-
else:
|
454 |
-
st.warning("No recommendations found for the provided basket.")
|
455 |
-
else:
|
456 |
-
st.warning("Please select at least one article and set its quantity.")
|
457 |
-
else:
|
458 |
-
st.write(f"### Customer {customer_code} is not a loyal customer.")
|
459 |
-
st.write("Select items and assign quantities for the basket:")
|
460 |
-
|
461 |
-
# Mostrar lista de artículos disponibles
|
462 |
-
available_articles = productos['ARTICULO'].unique()
|
463 |
-
selected_articles = st.multiselect("Select Articles", available_articles)
|
464 |
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
|
486 |
|
487 |
# Customer Analysis Page
|
|
|
11 |
# Page configuration
|
12 |
st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
|
13 |
|
14 |
+
# Load CSV files
|
15 |
df = pd.read_csv("df_clean.csv")
|
16 |
nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
17 |
euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
|
18 |
ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
|
19 |
+
customer_clusters = pd.read_csv('predicts/customer_clusters.csv')
|
20 |
+
df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
|
21 |
|
22 |
# Ensure customer codes are strings
|
23 |
df['CLIENTE'] = df['CLIENTE'].astype(str)
|
24 |
nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
25 |
euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
|
26 |
+
customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str)
|
27 |
fieles_df = pd.read_csv("clientes_relevantes.csv")
|
28 |
cestas = pd.read_csv("cestas.csv")
|
29 |
productos = pd.read_csv("productos.csv")
|
30 |
df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
|
31 |
|
32 |
+
# Convert columns in euros_proveedor to numeric
|
33 |
for col in euros_proveedor.columns:
|
34 |
if col != 'CLIENTE':
|
35 |
euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
|
36 |
|
37 |
+
# Check for NaN values in euros_proveedor
|
38 |
if euros_proveedor.isna().any().any():
|
39 |
st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
|
40 |
|
41 |
+
# Ignore the last two columns in df
|
42 |
df = df.iloc[:, :-2]
|
43 |
|
44 |
# Function to get supplier name
|
45 |
def get_supplier_name(code):
|
46 |
+
code = str(code)
|
47 |
name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
|
48 |
return name[0] if len(name) > 0 else code
|
49 |
|
50 |
+
# Function to create radar chart using Plotly
|
51 |
def radar_chart(categories, values, amounts, title):
|
52 |
+
fig = px.line_polar(
|
53 |
+
r=values,
|
54 |
+
theta=categories,
|
55 |
+
line_close=True,
|
56 |
+
labels={'r': '% Units Sold', 'theta': 'Manufacturers'},
|
57 |
+
title=title,
|
58 |
+
)
|
59 |
+
fig.add_scatterpolar(
|
60 |
+
r=amounts,
|
61 |
+
theta=categories,
|
62 |
+
line_close=True,
|
63 |
+
name="Spend (€)",
|
64 |
+
mode="lines+markers"
|
65 |
+
)
|
66 |
+
fig.update_traces(fill='toself')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return fig
|
68 |
|
69 |
# Main page design
|
|
|
81 |
st.markdown("## Welcome to the Customer Insights App")
|
82 |
st.write("Use the dropdown menu to navigate between the different sections.")
|
83 |
|
84 |
+
# Customer Analysis Page
|
85 |
elif page == "Customer Analysis":
|
86 |
st.title("Customer Analysis")
|
87 |
st.markdown("Use the tools below to explore your customer data.")
|
|
|
96 |
|
97 |
if st.button("Calcular"):
|
98 |
if customer_code:
|
|
|
99 |
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
100 |
|
101 |
if not customer_match.empty:
|
102 |
cluster = customer_match['cluster_id'].values[0]
|
103 |
st.write(f"Customer {customer_code} belongs to cluster {cluster}")
|
104 |
|
105 |
+
# Load the corresponding model
|
106 |
model_path = f'models/modelo_cluster_{cluster}.txt'
|
107 |
gbm = lgb.Booster(model_file=model_path)
|
108 |
st.write(f"Loaded model for cluster {cluster}")
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
# Load predict data for that cluster
|
111 |
predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
|
|
|
|
112 |
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
|
|
|
|
|
|
|
|
113 |
|
114 |
# Filter for the specific customer
|
115 |
+
customer_data = predict_data[predict_data['cliente_id'] == customer_code]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
if not customer_data.empty:
|
|
|
118 |
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
119 |
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
|
|
|
|
120 |
X_predict = customer_data[features]
|
121 |
|
122 |
# Convert categorical features to 'category' dtype
|
123 |
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
124 |
for feature in categorical_features:
|
125 |
X_predict[feature] = X_predict[feature].astype('category')
|
126 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
# Make Prediction for the selected customer
|
128 |
y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
129 |
+
|
130 |
+
# Results DataFrame
|
|
|
|
|
|
|
|
|
|
|
131 |
results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
132 |
results['ventas_predichas'] = y_pred
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# Load actual sales data
|
135 |
+
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code]
|
|
|
|
|
|
|
|
|
136 |
if not actual_sales.empty:
|
137 |
+
results = results.merge(
|
138 |
+
actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
139 |
+
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
140 |
+
how='left'
|
141 |
+
)
|
142 |
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
143 |
results['ventas_reales'].fillna(0, inplace=True)
|
144 |
+
|
145 |
+
# Calculate error metrics
|
|
|
|
|
|
|
146 |
valid_results = results.dropna(subset=['ventas_reales'])
|
147 |
if not valid_results.empty:
|
148 |
mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
|
149 |
mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
|
150 |
rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
|
151 |
|
|
|
152 |
st.write(f"MAE: {mae:.2f}")
|
153 |
st.write(f"MAPE: {mape:.2f}%")
|
154 |
st.write(f"RMSE: {rmse:.2f}")
|
155 |
|
156 |
+
# Plot radar chart
|
157 |
+
top_units = df[df["CLIENTE"] == str(customer_code)].iloc[:, 1:].T
|
158 |
+
top_sales = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)].iloc[:, 1:].T
|
159 |
+
|
160 |
+
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
|
|
|
|
|
|
161 |
|
162 |
+
combined_data = pd.DataFrame({
|
163 |
+
'units': top_units.loc[combined_top, top_units.columns[0]],
|
164 |
+
'sales': top_sales.loc[combined_top, top_sales.columns[0]]
|
165 |
+
}).fillna(0)
|
166 |
|
167 |
+
manufacturers = [get_supplier_name(m) for m in combined_data.index]
|
168 |
+
values = combined_data['units'].tolist()
|
169 |
+
amounts = combined_data['sales'].tolist()
|
|
|
170 |
|
171 |
+
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Customer {customer_code}')
|
172 |
+
st.plotly_chart(fig)
|
173 |
+
|
174 |
+
# Articles Recommendations Page
|
175 |
+
elif page == "Articles Recommendations":
|
176 |
+
st.title("Articles Recommendations")
|
177 |
|
178 |
+
st.markdown("""
|
179 |
+
Get tailored recommendations for your customers based on their basket.
|
180 |
+
""")
|
181 |
+
|
182 |
+
partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
|
183 |
+
if partial_code:
|
184 |
+
filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
|
185 |
+
else:
|
186 |
+
filtered_customers = df
|
187 |
+
customer_list = filtered_customers['CLIENTE'].unique()
|
188 |
+
customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
|
189 |
|
190 |
+
if customer_code:
|
191 |
+
option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
|
|
|
192 |
|
193 |
+
if option == "By Current Basket":
|
194 |
+
st.write("Select the items and assign quantities for the basket:")
|
195 |
|
196 |
+
available_articles = productos['ARTICULO'].unique()
|
197 |
+
selected_articles = st.multiselect("Select Articles", available_articles)
|
198 |
|
199 |
+
quantities = {article: st.number_input(f"Quantity for {article}", min_value=0, step=1) for article in selected_articles}
|
|
|
200 |
|
201 |
+
if st.button("Calcular"):
|
202 |
+
new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
|
203 |
|
204 |
+
if new_basket:
|
205 |
+
def recomienda(new_basket):
|
206 |
+
tfidf = TfidfVectorizer()
|
207 |
+
tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
|
208 |
+
new_basket_tfidf = tfidf.transform([' '.join(new_basket)])
|
209 |
+
similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
|
210 |
+
similar_indices = similarities.argsort()[0][-3:]
|
211 |
+
|
212 |
+
recommendations_count = {}
|
213 |
+
total_similarity = 0
|
214 |
+
|
215 |
+
for idx in similar_indices:
|
216 |
+
sim_score = similarities[0][idx]
|
217 |
+
total_similarity += sim_score
|
218 |
+
products = cestas.iloc[idx]['Cestas'].split()
|
219 |
+
|
220 |
+
for product in products:
|
221 |
+
if product not in new_basket:
|
222 |
+
recommendations_count[product] = recommendations_count.get(product, 0) + sim_score
|
223 |
+
|
224 |
+
recommendations_with_prob = [(prod, score / total_similarity) for prod, score in recommendations_count.items()]
|
225 |
+
recommendations_with_prob.sort(key=lambda x: x[1], reverse=True)
|
226 |
+
|
227 |
+
recommendations_df = pd.DataFrame({
|
228 |
+
'ARTICULO': [r[0] for r in recommendations_with_prob],
|
229 |
+
'PROBABILIDAD': [r[1] for r in recommendations_with_prob]
|
230 |
+
})
|
231 |
+
return recommendations_df
|
232 |
|
233 |
+
recommendations_df = recomienda(new_basket)
|
234 |
+
st.dataframe(recommendations_df)
|
235 |
+
else:
|
236 |
+
st.warning("Please select at least one article and set its quantity.")
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
# import streamlit as st
|
241 |
+
# import pandas as pd
|
242 |
+
# import plotly.express as px
|
243 |
+
# import matplotlib.pyplot as plt
|
244 |
+
# import numpy as np
|
245 |
+
# import lightgbm as lgb
|
246 |
+
# from sklearn.feature_extraction.text import TfidfVectorizer
|
247 |
+
# from sklearn.metrics.pairwise import cosine_similarity
|
248 |
+
# from sklearn.metrics import mean_absolute_error, mean_squared_error
|
249 |
+
|
250 |
+
# # Page configuration
|
251 |
+
# st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:")
|
252 |
+
|
253 |
+
# # Load CSV files at the top
|
254 |
+
# df = pd.read_csv("df_clean.csv")
|
255 |
+
# nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';')
|
256 |
+
# euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',')
|
257 |
+
# ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',')
|
258 |
+
# customer_clusters = pd.read_csv('predicts/customer_clusters.csv') # Load the customer clusters here
|
259 |
+
# df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv')
|
260 |
+
|
261 |
+
# # Ensure customer codes are strings
|
262 |
+
# df['CLIENTE'] = df['CLIENTE'].astype(str)
|
263 |
+
# nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str)
|
264 |
+
# euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str)
|
265 |
+
# customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str) # Ensure customer IDs are strings
|
266 |
+
# fieles_df = pd.read_csv("clientes_relevantes.csv")
|
267 |
+
# cestas = pd.read_csv("cestas.csv")
|
268 |
+
# productos = pd.read_csv("productos.csv")
|
269 |
+
# df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str)
|
270 |
+
|
271 |
+
# # Convert all columns except 'CLIENTE' to float in euros_proveedor
|
272 |
+
# for col in euros_proveedor.columns:
|
273 |
+
# if col != 'CLIENTE':
|
274 |
+
# euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce')
|
275 |
+
|
276 |
+
# # Check for NaN values after conversion
|
277 |
+
# if euros_proveedor.isna().any().any():
|
278 |
+
# st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.")
|
279 |
+
|
280 |
+
# # Ignore the last two columns of df
|
281 |
+
# df = df.iloc[:, :-2]
|
282 |
+
|
283 |
+
# # Function to get supplier name
|
284 |
+
# def get_supplier_name(code):
|
285 |
+
# code = str(code) # Ensure code is a string
|
286 |
+
# name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values
|
287 |
+
# return name[0] if len(name) > 0 else code
|
288 |
+
|
289 |
+
# # Function to create radar chart with square root transformation
|
290 |
+
# def radar_chart(categories, values, amounts, title):
|
291 |
+
# N = len(categories)
|
292 |
+
# angles = [n / float(N) * 2 * np.pi for n in range(N)]
|
293 |
+
# angles += angles[:1]
|
294 |
+
|
295 |
+
# fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar'))
|
296 |
+
|
297 |
+
# # Apply square root transformation
|
298 |
+
# sqrt_values = np.sqrt(values)
|
299 |
+
# sqrt_amounts = np.sqrt(amounts)
|
300 |
+
|
301 |
+
# max_sqrt_value = max(sqrt_values)
|
302 |
+
# normalized_values = [v / max_sqrt_value for v in sqrt_values]
|
303 |
+
|
304 |
+
# # Adjust scaling for spend values
|
305 |
+
# max_sqrt_amount = max(sqrt_amounts)
|
306 |
+
# scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up
|
307 |
+
# normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts]
|
308 |
+
|
309 |
+
# normalized_values += normalized_values[:1]
|
310 |
+
# ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)')
|
311 |
+
# ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4')
|
312 |
+
|
313 |
+
# normalized_amounts += normalized_amounts[:1]
|
314 |
+
# ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)')
|
315 |
+
# ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082')
|
316 |
+
|
317 |
+
# ax.set_xticks(angles[:-1])
|
318 |
+
# ax.set_xticklabels(categories, size=8, wrap=True)
|
319 |
+
# ax.set_ylim(0, 1)
|
320 |
+
|
321 |
+
# circles = np.linspace(0, 1, 5)
|
322 |
+
# for circle in circles:
|
323 |
+
# ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5)
|
324 |
+
|
325 |
+
# ax.set_yticklabels([])
|
326 |
+
# ax.spines['polar'].set_visible(False)
|
327 |
+
|
328 |
+
# plt.title(title, size=16, y=1.1)
|
329 |
+
# plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1))
|
330 |
+
|
331 |
+
# return fig
|
332 |
+
|
333 |
+
# # Main page design
|
334 |
+
# st.title("Welcome to Customer Insights App")
|
335 |
+
# st.markdown("""
|
336 |
+
# This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history.
|
337 |
+
# Use the tools below to dive deeper into your customer data.
|
338 |
+
# """)
|
339 |
+
|
340 |
+
# # Navigation menu
|
341 |
+
# page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"])
|
342 |
+
|
343 |
+
# # Home Page
|
344 |
+
# if page == "":
|
345 |
+
# st.markdown("## Welcome to the Customer Insights App")
|
346 |
+
# st.write("Use the dropdown menu to navigate between the different sections.")
|
347 |
+
|
348 |
+
# # Customer Analysis Page
|
349 |
+
# elif page == "Customer Analysis":
|
350 |
+
# st.title("Customer Analysis")
|
351 |
+
# st.markdown("Use the tools below to explore your customer data.")
|
352 |
+
|
353 |
+
# partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)")
|
354 |
+
# if partial_code:
|
355 |
+
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
|
356 |
+
# else:
|
357 |
+
# filtered_customers = df
|
358 |
+
# customer_list = filtered_customers['CLIENTE'].unique()
|
359 |
+
# customer_code = st.selectbox("Select Customer Code", customer_list)
|
360 |
+
|
361 |
+
# if st.button("Calcular"):
|
362 |
+
# if customer_code:
|
363 |
+
# # Find Customer's Cluster
|
364 |
+
# customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
365 |
+
|
366 |
+
# if not customer_match.empty:
|
367 |
+
# cluster = customer_match['cluster_id'].values[0]
|
368 |
+
# st.write(f"Customer {customer_code} belongs to cluster {cluster}")
|
369 |
+
|
370 |
+
# # Load the Corresponding Model
|
371 |
+
# model_path = f'models/modelo_cluster_{cluster}.txt'
|
372 |
+
# gbm = lgb.Booster(model_file=model_path)
|
373 |
+
# st.write(f"Loaded model for cluster {cluster}")
|
374 |
+
|
375 |
+
# # Inspect the model
|
376 |
+
# st.write("### Model Information:")
|
377 |
+
# st.write(f"Number of trees: {gbm.num_trees()}")
|
378 |
+
# st.write(f"Number of features: {gbm.num_feature()}")
|
379 |
+
# st.write("Feature names:")
|
380 |
+
# st.write(gbm.feature_name())
|
381 |
+
|
382 |
+
# # Load predict data for that cluster
|
383 |
+
# predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
384 |
+
|
385 |
+
# # Convert cliente_id to string
|
386 |
+
# predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
387 |
+
|
388 |
+
# st.write("### Predict Data DataFrame:")
|
389 |
+
# st.write(predict_data.head())
|
390 |
+
# st.write(f"Shape: {predict_data.shape}")
|
391 |
+
|
392 |
+
# # Filter for the specific customer
|
393 |
+
# customer_code_str = str(customer_code)
|
394 |
+
# customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
|
395 |
+
|
396 |
+
# # Add debug statements
|
397 |
+
# st.write(f"Unique customer IDs in predict data: {predict_data['cliente_id'].unique()}")
|
398 |
+
# st.write(f"Customer code we're looking for: {customer_code_str}")
|
399 |
+
|
400 |
+
# st.write("### Customer Data:")
|
401 |
+
# st.write(customer_data.head())
|
402 |
+
# st.write(f"Shape: {customer_data.shape}")
|
403 |
+
|
404 |
+
# if not customer_data.empty:
|
405 |
+
# # Define features consistently with the training process
|
406 |
+
# lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
407 |
+
# features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
408 |
+
|
409 |
+
# # Prepare data for prediction
|
410 |
+
# X_predict = customer_data[features]
|
411 |
+
|
412 |
+
# # Convert categorical features to 'category' dtype
|
413 |
+
# categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
414 |
+
# for feature in categorical_features:
|
415 |
+
# X_predict[feature] = X_predict[feature].astype('category')
|
416 |
+
|
417 |
+
# st.write("### Features for Prediction:")
|
418 |
+
# st.write(X_predict.head())
|
419 |
+
# st.write(f"Shape: {X_predict.shape}")
|
420 |
+
# st.write("Data types:")
|
421 |
+
# st.write(X_predict.dtypes)
|
422 |
+
|
423 |
+
# # Make Prediction for the selected customer
|
424 |
+
# y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
425 |
+
# st.write("### Prediction Results:")
|
426 |
+
# st.write(f"Type of y_pred: {type(y_pred)}")
|
427 |
+
# st.write(f"Shape of y_pred: {y_pred.shape}")
|
428 |
+
# st.write("First few predictions:")
|
429 |
+
# st.write(y_pred[:5])
|
430 |
+
|
431 |
+
# # Reassemble the results
|
432 |
+
# results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
433 |
+
# results['ventas_predichas'] = y_pred
|
434 |
+
# st.write("### Results DataFrame:")
|
435 |
+
# st.write(results.head())
|
436 |
+
# st.write(f"Shape: {results.shape}")
|
437 |
+
|
438 |
+
# st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}")
|
439 |
+
|
440 |
+
# # Load actual data
|
441 |
+
# actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
|
442 |
+
# st.write("### Actual Sales DataFrame:")
|
443 |
+
# st.write(actual_sales.head())
|
444 |
+
# st.write(f"Shape: {actual_sales.shape}")
|
445 |
+
|
446 |
+
# if not actual_sales.empty:
|
447 |
+
# results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
448 |
+
# on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
449 |
+
# how='left')
|
450 |
+
# results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
451 |
+
# results['ventas_reales'].fillna(0, inplace=True)
|
452 |
+
# st.write("### Final Results DataFrame:")
|
453 |
+
# st.write(results.head())
|
454 |
+
# st.write(f"Shape: {results.shape}")
|
455 |
+
|
456 |
+
# # Calculate metrics only for non-null actual sales
|
457 |
+
# valid_results = results.dropna(subset=['ventas_reales'])
|
458 |
+
# if not valid_results.empty:
|
459 |
+
# mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
|
460 |
+
# mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100
|
461 |
+
# rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
|
462 |
+
|
463 |
+
# st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
|
464 |
+
# st.write(f"MAE: {mae:.2f}")
|
465 |
+
# st.write(f"MAPE: {mape:.2f}%")
|
466 |
+
# st.write(f"RMSE: {rmse:.2f}")
|
467 |
+
|
468 |
+
# # Analysis of results
|
469 |
+
# threshold_good = 100 # You may want to adjust this threshold
|
470 |
+
# if mae < threshold_good:
|
471 |
+
# st.success(f"Customer {customer_code} is performing well based on the predictions.")
|
472 |
+
# else:
|
473 |
+
# st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
|
474 |
+
# else:
|
475 |
+
# st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
|
476 |
+
|
477 |
+
# st.write("### Debug Information for Radar Chart:")
|
478 |
+
# st.write(f"Shape of customer_data: {customer_data.shape}")
|
479 |
+
# st.write(f"Shape of euros_proveedor: {euros_proveedor.shape}")
|
480 |
+
|
481 |
+
# # Get percentage of units sold for each manufacturer
|
482 |
+
# customer_df = df[df["CLIENTE"] == str(customer_code)] # Get the customer data
|
483 |
+
# all_manufacturers = customer_df.iloc[:, 1:].T # Exclude CLIENTE column (manufacturers are in columns)
|
484 |
+
# all_manufacturers.index = all_manufacturers.index.astype(str)
|
485 |
+
|
486 |
+
# # Get total sales for each manufacturer from euros_proveedor
|
487 |
+
# customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
|
488 |
+
# sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
|
489 |
+
# sales_data.index = sales_data.index.astype(str)
|
490 |
+
|
491 |
+
# # Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types
|
492 |
+
# sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
|
493 |
+
|
494 |
+
# # Ensure all values are numeric
|
495 |
+
# sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
|
496 |
+
# all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
497 |
+
|
498 |
+
# # Sort manufacturers by percentage of units and get top 10
|
499 |
+
# top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
|
500 |
|
501 |
+
# # Sort manufacturers by total sales and get top 10
|
502 |
+
# top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
|
503 |
|
504 |
+
# # Combine top manufacturers from both lists and get up to 20 unique manufacturers
|
505 |
+
# combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
506 |
|
507 |
+
# # Filter out manufacturers that are not present in both datasets
|
508 |
+
# combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
|
|
|
|
|
|
|
|
|
509 |
|
510 |
+
# st.write(f"Number of combined top manufacturers: {len(combined_top)}")
|
|
|
|
|
511 |
|
512 |
+
# if combined_top:
|
513 |
+
# # Create a DataFrame with combined data for these top manufacturers
|
514 |
+
# combined_data = pd.DataFrame({
|
515 |
+
# 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
|
516 |
+
# 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
|
517 |
+
# }).fillna(0)
|
518 |
|
519 |
+
# # Sort by units, then by sales
|
520 |
+
# combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
|
|
|
|
|
|
|
521 |
|
522 |
+
# # Filter out manufacturers with 0 units
|
523 |
+
# non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
|
524 |
|
525 |
+
# # If we have less than 3 non-zero manufacturers, add some zero-value ones
|
526 |
+
# if len(non_zero_manufacturers) < 3:
|
527 |
+
# zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
|
528 |
+
# manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
|
529 |
+
# else:
|
530 |
+
# manufacturers_to_show = non_zero_manufacturers
|
531 |
|
532 |
+
# values = manufacturers_to_show['units'].tolist()
|
533 |
+
# amounts = manufacturers_to_show['sales'].tolist()
|
534 |
+
# manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
|
535 |
|
536 |
+
# st.write(f"### Results for top {len(manufacturers)} manufacturers:")
|
537 |
+
# for manufacturer, value, amount in zip(manufacturers, values, amounts):
|
538 |
+
# st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
|
|
|
539 |
|
540 |
+
# if manufacturers: # Only create the chart if we have data
|
541 |
+
# fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
|
542 |
+
# st.pyplot(fig)
|
543 |
+
# else:
|
544 |
+
# st.warning("No data available to create the radar chart.")
|
545 |
+
|
546 |
+
# else:
|
547 |
+
# st.warning("No combined top manufacturers found.")
|
548 |
+
|
549 |
+
# # Ensure codigo_cliente in ventas_clientes is a string
|
550 |
+
# ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip()
|
551 |
+
|
552 |
+
# # Ensure customer_code is a string and strip any spaces
|
553 |
+
# customer_code = str(customer_code).strip()
|
554 |
+
|
555 |
+
# if customer_code in ventas_clientes['codigo_cliente'].unique():
|
556 |
+
# st.write(f"Customer {customer_code} found in ventas_clientes")
|
557 |
+
# else:
|
558 |
+
# st.write(f"Customer {customer_code} not found in ventas_clientes")
|
559 |
+
|
560 |
+
# # Customer sales 2021-2024 (if data exists)
|
561 |
+
# sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
562 |
+
# if all(col in ventas_clientes.columns for col in sales_columns):
|
563 |
+
# customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
564 |
|
565 |
+
# if not customer_sales_data.empty:
|
566 |
+
# customer_sales = customer_sales_data[sales_columns].values[0]
|
567 |
+
# years = ['2021', '2022', '2023']
|
568 |
|
569 |
+
# fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}')
|
570 |
+
# fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales")
|
571 |
+
# st.plotly_chart(fig_sales)
|
572 |
+
# else:
|
573 |
+
# st.warning(f"No historical sales data found for customer {customer_code}")
|
574 |
+
# else:
|
575 |
+
# st.warning("Sales data for 2021-2023 not available in the dataset.")
|
576 |
+
# else:
|
577 |
+
# st.warning(f"No data found for customer {customer_code}. Please check the code.")
|
578 |
+
# else:
|
579 |
+
# st.warning("Please select a customer.")
|
580 |
|
581 |
|
582 |
+
# # Customer Recommendations Page
|
583 |
+
# elif page == "Articles Recommendations":
|
584 |
+
# st.title("Articles Recommendations")
|
585 |
|
586 |
+
# st.markdown("""
|
587 |
+
# Get tailored recommendations for your customers based on their basket.
|
588 |
+
# """)
|
589 |
|
590 |
+
# # Campo input para cliente
|
591 |
+
# partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)")
|
592 |
+
# if partial_code:
|
593 |
+
# filtered_customers = df[df['CLIENTE'].str.contains(partial_code)]
|
594 |
+
# else:
|
595 |
+
# filtered_customers = df
|
596 |
+
# customer_list = filtered_customers['CLIENTE'].unique()
|
597 |
+
# customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list))
|
598 |
+
|
599 |
+
# # Definición de la función recomienda
|
600 |
+
# def recomienda(new_basket):
|
601 |
+
# # Calcular la matriz TF-IDF
|
602 |
+
# tfidf = TfidfVectorizer()
|
603 |
+
# tfidf_matrix = tfidf.fit_transform(cestas['Cestas'])
|
604 |
+
|
605 |
+
# # Convertir la nueva cesta en formato TF-IDF
|
606 |
+
# new_basket_str = ' '.join(new_basket)
|
607 |
+
# new_basket_tfidf = tfidf.transform([new_basket_str])
|
608 |
+
|
609 |
+
# # Comparar la nueva cesta con las anteriores
|
610 |
+
# similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix)
|
611 |
+
|
612 |
+
# # Obtener los índices de las cestas más similares
|
613 |
+
# similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares
|
614 |
+
|
615 |
+
# # Crear un diccionario para contar las recomendaciones
|
616 |
+
# recommendations_count = {}
|
617 |
+
# total_similarity = 0
|
618 |
+
|
619 |
+
# # Recomendar productos de cestas similares
|
620 |
+
# for idx in similar_indices:
|
621 |
+
# sim_score = similarities[0][idx]
|
622 |
+
# total_similarity += sim_score
|
623 |
+
# products = cestas.iloc[idx]['Cestas'].split()
|
624 |
+
|
625 |
+
# for product in products:
|
626 |
+
# if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta
|
627 |
+
# if product.strip() in recommendations_count:
|
628 |
+
# recommendations_count[product.strip()] += sim_score
|
629 |
+
# else:
|
630 |
+
# recommendations_count[product.strip()] = sim_score
|
631 |
|
632 |
+
# # Calcular la probabilidad relativa de cada producto recomendado
|
633 |
+
# recommendations_with_prob = []
|
634 |
+
# if total_similarity > 0: # Verificar que total_similarity no sea cero
|
635 |
+
# recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()]
|
636 |
+
# else:
|
637 |
+
# print("No se encontraron similitudes suficientes para calcular probabilidades.")
|
638 |
+
|
639 |
+
# recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación
|
640 |
+
|
641 |
+
# # Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades
|
642 |
+
# recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD'])
|
643 |
+
|
644 |
+
# # Agregar las recomendaciones al DataFrame usando pd.concat
|
645 |
+
# for product, prob in recommendations_with_prob:
|
646 |
+
# # Buscar la descripción en el DataFrame de productos
|
647 |
+
# description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION']
|
648 |
+
# if not description.empty:
|
649 |
+
# # Crear un nuevo DataFrame temporal para la recomendación
|
650 |
+
# temp_df = pd.DataFrame({
|
651 |
+
# 'ARTICULO': [product],
|
652 |
+
# 'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado
|
653 |
+
# 'PROBABILIDAD': [prob]
|
654 |
+
# })
|
655 |
+
# # Concatenar el DataFrame temporal al DataFrame de recomendaciones
|
656 |
+
# recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True)
|
657 |
+
|
658 |
+
# return recommendations_df
|
659 |
+
|
660 |
+
# # Comprobar si el cliente está en el CSV de fieles
|
661 |
+
# is_fiel = customer_code in fieles_df['Cliente'].astype(str).values
|
662 |
+
|
663 |
+
# if customer_code:
|
664 |
+
# if is_fiel:
|
665 |
+
# st.write(f"### Customer {customer_code} is a loyal customer.")
|
666 |
+
# option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"])
|
667 |
+
|
668 |
+
# if option == "By Purchase History":
|
669 |
+
# st.warning("Option not available... aún")
|
670 |
+
# elif option == "By Current Basket":
|
671 |
+
# st.write("Select the items and assign quantities for the basket:")
|
672 |
+
|
673 |
+
# # Mostrar lista de artículos disponibles
|
674 |
+
# available_articles = productos['ARTICULO'].unique()
|
675 |
+
# selected_articles = st.multiselect("Select Articles", available_articles)
|
676 |
+
|
677 |
+
# # Crear inputs para ingresar las cantidades de cada artículo seleccionado
|
678 |
+
# quantities = {}
|
679 |
+
# for article in selected_articles:
|
680 |
+
# quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
|
681 |
+
|
682 |
+
# if st.button("Calcular"): # Añadimos el botón "Calcular"
|
683 |
+
# # Crear una lista de artículos basada en la selección
|
684 |
+
# new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
|
685 |
+
|
686 |
+
# if new_basket:
|
687 |
+
# # Procesar la lista para recomendar
|
688 |
+
# recommendations_df = recomienda(new_basket)
|
689 |
+
|
690 |
+
# if not recommendations_df.empty:
|
691 |
+
# st.write("### Recommendations based on the current basket:")
|
692 |
+
# st.dataframe(recommendations_df)
|
693 |
+
# else:
|
694 |
+
# st.warning("No recommendations found for the provided basket.")
|
695 |
+
# else:
|
696 |
+
# st.warning("Please select at least one article and set its quantity.")
|
697 |
+
# else:
|
698 |
+
# st.write(f"### Customer {customer_code} is not a loyal customer.")
|
699 |
+
# st.write("Select items and assign quantities for the basket:")
|
700 |
|
701 |
+
# # Mostrar lista de artículos disponibles
|
702 |
+
# available_articles = productos['ARTICULO'].unique()
|
703 |
+
# selected_articles = st.multiselect("Select Articles", available_articles)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
704 |
|
705 |
+
# # Crear inputs para ingresar las cantidades de cada artículo seleccionado
|
706 |
+
# quantities = {}
|
707 |
+
# for article in selected_articles:
|
708 |
+
# quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1)
|
709 |
|
710 |
+
# if st.button("Calcular"): # Añadimos el botón "Calcular"
|
711 |
+
# # Crear una lista de artículos basada en la selección
|
712 |
+
# new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0]
|
713 |
|
714 |
+
# if new_basket:
|
715 |
+
# # Procesar la lista para recomendar
|
716 |
+
# recommendations_df = recomienda(new_basket)
|
717 |
|
718 |
+
# if not recommendations_df.empty:
|
719 |
+
# st.write("### Recommendations based on the current basket:")
|
720 |
+
# st.dataframe(recommendations_df)
|
721 |
+
# else:
|
722 |
+
# st.warning("No recommendations found for the provided basket.")
|
723 |
+
# else:
|
724 |
+
# st.warning("Please select at least one article and set its quantity.")
|
725 |
|
726 |
|
727 |
# Customer Analysis Page
|