GMARTINEZMILLA commited on
Commit
33e015e
1 Parent(s): e85884b

feat: Translated Summary to Spanish

Browse files
Files changed (1) hide show
  1. app.py +14 -15
app.py CHANGED
@@ -72,7 +72,7 @@ historical_data = pd.read_csv('historical_data.csv')
72
 
73
  with st.sidebar:
74
  st.sidebar.title("DeepInsightz")
75
- page = st.sidebar.selectbox("Select the tool you want to use", ["Summary", "Customer Analysis", "Articles Recommendations"])
76
 
77
  # Generamos la columna total_sales
78
  ventas_clientes['total_sales'] = ventas_clientes[['VENTA_2021', 'VENTA_2022', 'VENTA_2023']].sum(axis=1)
@@ -205,7 +205,7 @@ def radar_chart(categories, values, amounts, title):
205
 
206
 
207
 
208
- if page == "Summary":
209
  # st.title("Welcome to DeepInsightz")
210
  # st.markdown("""
211
  # ### Data-driven Customer Clustering
@@ -217,17 +217,17 @@ if page == "Summary":
217
 
218
  # Left Column (Red): Metrics and Donut Charts
219
  with col1:
220
- st.markdown('#### General Information')
221
- st.metric(label="Range of Dates", value="2021-2023")
222
- st.metric(label="Customers Analysed", value="3.000")
223
- st.metric(label="Unique Products Sold", value="10.702")
224
- st.metric(label="Total Sales Instances", value="764.396")
225
 
226
 
227
 
228
  # Middle Column (White): 3D Cluster Model and Bar Chart
229
  with col2:
230
- st.markdown('#### 3D Customer Clusters')
231
 
232
  # Create 3D PCA plot using actual data from pca_data_5
233
  fig_cluster = px.scatter_3d(
@@ -236,7 +236,7 @@ if page == "Summary":
236
  y='PC2',
237
  z='PC3',
238
  color='cluster_id',
239
- hover_name='CustomerID',
240
  )
241
  fig_cluster.update_layout(
242
  scene=dict(aspectratio=dict(x=1, y=1, z=0.8)), # Adjusted aspect ratio for better balance
@@ -248,7 +248,7 @@ if page == "Summary":
248
  # Right Column (Blue): Key Metrics Overview and Data Preparation Summary
249
  with col3:
250
  # Mostrar la tabla con los 100 mejores clientes
251
- st.markdown('#### Top 100 Clients by Total Sales')
252
 
253
  # Configurar columnas para mostrar los clientes y las ventas totales
254
  st.dataframe(ventas_top_100[['codigo_cliente', 'total_sales']],
@@ -258,20 +258,19 @@ if page == "Summary":
258
  height=600, # Ajustar la altura de la tabla
259
  column_config={
260
  "codigo_cliente": st.column_config.TextColumn(
261
- "Client Code",
262
  ),
263
  "total_sales": st.column_config.ProgressColumn(
264
- "Total Sales (€)",
265
  format="%d",
266
  min_value=0,
267
  max_value=ventas_top_100['total_sales'].max()
268
  )}
269
  )
270
  # Customer Analysis Page
271
- # Customer Analysis Page
272
- elif page == "Customer Analysis":
273
  st.markdown("""
274
- <h2 style='text-align: center; font-size: 2.5rem;'>Customer Analysis</h2>
275
  <p style='text-align: center; font-size: 1.2rem; color: gray;'>
276
  Enter the customer code to explore detailed customer insights,
277
  including past sales, predictions for the current year, and manufacturer-specific information.
 
72
 
73
  with st.sidebar:
74
  st.sidebar.title("DeepInsightz")
75
+ page = st.sidebar.selectbox("Select the tool you want to use", ["Resumen", "Análisis de Cliente", "Articles Recommendations"])
76
 
77
  # Generamos la columna total_sales
78
  ventas_clientes['total_sales'] = ventas_clientes[['VENTA_2021', 'VENTA_2022', 'VENTA_2023']].sum(axis=1)
 
205
 
206
 
207
 
208
+ if page == "Resumen":
209
  # st.title("Welcome to DeepInsightz")
210
  # st.markdown("""
211
  # ### Data-driven Customer Clustering
 
217
 
218
  # Left Column (Red): Metrics and Donut Charts
219
  with col1:
220
+ st.markdown('#### Información General')
221
+ st.metric(label="Rango de fechas", value="2021-2023")
222
+ st.metric(label="Clientes Analizados", value="3.000")
223
+ st.metric(label="Productos Únicos Vendidos", value="10.702")
224
+ st.metric(label="Líneas de Venta Totales", value="764.396")
225
 
226
 
227
 
228
  # Middle Column (White): 3D Cluster Model and Bar Chart
229
  with col2:
230
+ st.markdown('#### Cluster de Clientes 3D')
231
 
232
  # Create 3D PCA plot using actual data from pca_data_5
233
  fig_cluster = px.scatter_3d(
 
236
  y='PC2',
237
  z='PC3',
238
  color='cluster_id',
239
+ hover_name='ClienteID',
240
  )
241
  fig_cluster.update_layout(
242
  scene=dict(aspectratio=dict(x=1, y=1, z=0.8)), # Adjusted aspect ratio for better balance
 
248
  # Right Column (Blue): Key Metrics Overview and Data Preparation Summary
249
  with col3:
250
  # Mostrar la tabla con los 100 mejores clientes
251
+ st.markdown('#### Top 100 Clientes')
252
 
253
  # Configurar columnas para mostrar los clientes y las ventas totales
254
  st.dataframe(ventas_top_100[['codigo_cliente', 'total_sales']],
 
258
  height=600, # Ajustar la altura de la tabla
259
  column_config={
260
  "codigo_cliente": st.column_config.TextColumn(
261
+ "Código de Cliente",
262
  ),
263
  "total_sales": st.column_config.ProgressColumn(
264
+ "Venta Total (€)",
265
  format="%d",
266
  min_value=0,
267
  max_value=ventas_top_100['total_sales'].max()
268
  )}
269
  )
270
  # Customer Analysis Page
271
+ elif page == "Análisis de Cliente":
 
272
  st.markdown("""
273
+ <h2 style='text-align: center; font-size: 2.5rem;'>Análisis de Cliente</h2>
274
  <p style='text-align: center; font-size: 1.2rem; color: gray;'>
275
  Enter the customer code to explore detailed customer insights,
276
  including past sales, predictions for the current year, and manufacturer-specific information.