Spaces:
Sleeping
Sleeping
GMARTINEZMILLA
commited on
Commit
•
4f71e96
1
Parent(s):
1c4696d
feat: generate the filtering by manufacturer not complete
Browse files
app.py
CHANGED
@@ -326,395 +326,403 @@ elif page == "🕵️ Análisis de Cliente":
|
|
326 |
|
327 |
if not customer_match.empty:
|
328 |
cluster = customer_match['cluster_id'].values[0]
|
329 |
-
|
330 |
-
|
331 |
-
#
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
341 |
-
|
342 |
-
with st.spinner("Filtrando data..."):
|
343 |
-
# Filter for the specific customer
|
344 |
-
customer_code_str = str(customer_code)
|
345 |
-
customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
|
346 |
-
|
347 |
-
with st.spinner("Geneerando predicciones de venta..."):
|
348 |
-
if not customer_data.empty:
|
349 |
-
# Define features consistently with the training process
|
350 |
-
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
351 |
-
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
352 |
-
|
353 |
-
# Prepare data for prediction
|
354 |
-
X_predict = customer_data[features]
|
355 |
-
|
356 |
-
# Convert categorical features to 'category' dtype
|
357 |
-
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
358 |
-
for feature in categorical_features:
|
359 |
-
X_predict[feature] = X_predict[feature].astype('category')
|
360 |
|
361 |
-
#
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
if not actual_sales.empty:
|
372 |
-
# Merge predictions with actual sales
|
373 |
-
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
374 |
-
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
375 |
-
how='left')
|
376 |
-
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
377 |
-
else:
|
378 |
-
# If no actual sales data for 2024, fill 'ventas_reales' with 0
|
379 |
-
results['ventas_reales'] = 0
|
380 |
-
|
381 |
-
# Ensure any missing sales data is filled with 0
|
382 |
-
results['ventas_reales'].fillna(0, inplace=True)
|
383 |
-
|
384 |
-
# Define the cutoff date for the last 12 months
|
385 |
-
fecha_inicio = pd.to_datetime("2023-01-01")
|
386 |
-
fecha_corte = pd.to_datetime("2024-09-01")
|
387 |
-
|
388 |
-
# Convertir fecha_mes a datetime en el DataFrame historical_data
|
389 |
-
historical_data['fecha_mes'] = pd.to_datetime(historical_data['fecha_mes'], errors='coerce')
|
390 |
-
|
391 |
-
# Ensure cliente_id is of type string and strip any leading/trailing whitespace
|
392 |
-
historical_data['cliente_id'] = historical_data['cliente_id'].astype(str).str.strip()
|
393 |
-
customer_code_str = str(customer_code).strip() # Ensure the customer code is also properly formatted
|
394 |
-
|
395 |
-
filtered_historical_data = historical_data[historical_data['cliente_id'] == customer_code_str]
|
396 |
-
|
397 |
-
|
398 |
-
# Filtrar los datos históricos por cliente y por el rango de fechas (2023)
|
399 |
-
fecha_inicio_2023 = pd.to_datetime("2023-01-01")
|
400 |
-
fecha_fin_2023 = pd.to_datetime("2023-12-31")
|
401 |
-
|
402 |
-
datos_historicos = historical_data[
|
403 |
-
(historical_data['cliente_id'] == customer_code_str) &
|
404 |
-
(historical_data['fecha_mes'] >= fecha_inicio_2023) &
|
405 |
-
(historical_data['fecha_mes'] <= fecha_fin_2023)
|
406 |
-
].groupby('fecha_mes')['precio_total'].sum().reset_index()
|
407 |
-
|
408 |
-
# Renombrar la columna 'precio_total' a 'ventas_historicas' si no está vacía
|
409 |
-
if not datos_historicos.empty:
|
410 |
-
datos_historicos.rename(columns={'precio_total': 'ventas_historicas'}, inplace=True)
|
411 |
-
else:
|
412 |
-
# Si los datos históricos están vacíos, generar fechas de 2023 con ventas_historicas = 0
|
413 |
-
fechas_2023 = pd.date_range(start='2023-01-01', end='2023-12-31', freq='M')
|
414 |
-
datos_historicos = pd.DataFrame({'fecha_mes': fechas_2023, 'ventas_historicas': [0] * len(fechas_2023)})
|
415 |
-
|
416 |
-
# Filtrar los datos de predicciones y ventas reales para 2024
|
417 |
-
datos_cliente_total = results.groupby('fecha_mes').agg({
|
418 |
-
'ventas_reales': 'sum',
|
419 |
-
'ventas_predichas': 'sum'
|
420 |
-
}).reset_index()
|
421 |
-
|
422 |
-
# Asegurarnos de que fecha_mes en datos_cliente_total es datetime
|
423 |
-
datos_cliente_total['fecha_mes'] = pd.to_datetime(datos_cliente_total['fecha_mes'], errors='coerce')
|
424 |
-
|
425 |
-
# Generar un rango de fechas para 2024 si no hay predicciones
|
426 |
-
fechas_2024 = pd.date_range(start='2024-01-01', end='2024-12-31', freq='M')
|
427 |
-
fechas_df_2024 = pd.DataFrame({'fecha_mes': fechas_2024})
|
428 |
-
|
429 |
-
# Asegurarnos de que fecha_mes en fechas_df_2024 es datetime
|
430 |
-
fechas_df_2024['fecha_mes'] = pd.to_datetime(fechas_df_2024['fecha_mes'], errors='coerce')
|
431 |
-
|
432 |
-
# Combinar datos históricos con predicciones y ventas reales usando un merge
|
433 |
-
# Usamos how='outer' para asegurarnos de incluir todas las fechas de 2023 y 2024
|
434 |
-
datos_combinados = pd.merge(datos_historicos, datos_cliente_total, on='fecha_mes', how='outer').sort_values('fecha_mes')
|
435 |
-
|
436 |
-
# Rellenar los NaN: 0 en ventas_historicas donde faltan predicciones, y viceversa
|
437 |
-
datos_combinados['ventas_historicas'].fillna(0, inplace=True)
|
438 |
-
datos_combinados['ventas_predichas'].fillna(0, inplace=True)
|
439 |
-
datos_combinados['ventas_reales'].fillna(0, inplace=True)
|
440 |
-
|
441 |
-
# Crear la gráfica con Plotly
|
442 |
-
fig = go.Figure()
|
443 |
-
|
444 |
-
# Graficar ventas históricas
|
445 |
-
fig.add_trace(go.Scatter(
|
446 |
-
x=datos_combinados['fecha_mes'],
|
447 |
-
y=datos_combinados['ventas_historicas'],
|
448 |
-
mode='lines+markers',
|
449 |
-
name='Ventas Históricas',
|
450 |
-
line=dict(color='blue')
|
451 |
-
))
|
452 |
-
|
453 |
-
# Graficar ventas predichas
|
454 |
-
fig.add_trace(go.Scatter(
|
455 |
-
x=datos_combinados['fecha_mes'],
|
456 |
-
y=datos_combinados['ventas_predichas'],
|
457 |
-
mode='lines+markers',
|
458 |
-
name='Ventas Predichas',
|
459 |
-
line=dict(color='orange')
|
460 |
-
))
|
461 |
-
|
462 |
-
# Graficar ventas reales
|
463 |
-
fig.add_trace(go.Scatter(
|
464 |
-
x=datos_combinados['fecha_mes'],
|
465 |
-
y=datos_combinados['ventas_reales'],
|
466 |
-
mode='lines+markers',
|
467 |
-
name='Ventas Reales',
|
468 |
-
line=dict(color='green')
|
469 |
-
))
|
470 |
-
|
471 |
-
# Personalizar el layout para enfocarse en 2023 y 2024
|
472 |
-
fig.update_layout(
|
473 |
-
title=f"Ventas Históricas, Predichas y Reales para Cliente {customer_code}",
|
474 |
-
xaxis_title="Fecha",
|
475 |
-
yaxis_title="Ventas (€)",
|
476 |
-
height=600,
|
477 |
-
xaxis_range=[fecha_inicio_2023, pd.to_datetime("2024-09-30")], # Ajustar el rango del eje x a 2023-2024
|
478 |
-
legend_title="Tipo de Ventas",
|
479 |
-
hovermode="x unified"
|
480 |
-
)
|
481 |
|
482 |
-
|
483 |
-
|
|
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
actual = datos_2024['ventas_reales']
|
488 |
-
predicted = datos_2024['ventas_predichas']
|
489 |
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
|
494 |
-
|
495 |
-
mse = mean_squared_error(actual, predicted)
|
496 |
-
rmse = np.sqrt(mse)
|
497 |
-
mape = calculate_mape(actual, predicted)
|
498 |
-
smape = np.mean(2 * np.abs(actual - predicted) / (np.abs(actual) + np.abs(predicted))) * 100
|
499 |
|
500 |
-
# Display metrics
|
501 |
-
st.subheader("Métricas de Predicción (2024)")
|
502 |
-
col1, col2, col3, col4 = st.columns(4)
|
503 |
-
col1.metric("MAE", f"{mae:.2f} €",help="Promedio de la diferencia absoluta entre las predicciones y los valores reales.")
|
504 |
-
col2.metric("MAPE", f"{mape:.2f}%",help="Porcentaje promedio de error en las predicciones.")
|
505 |
-
col3.metric("RMSE", f"{rmse:.2f} €",help="Medida de la desviación estándar de los residuos de predicción.")
|
506 |
-
col4.metric("SMAPE", f"{smape:.2f}%",help="Alternativa al MAPE que maneja mejor los valores cercanos a cero.")
|
507 |
|
|
|
|
|
|
|
508 |
|
509 |
-
|
510 |
-
|
|
|
|
|
|
|
511 |
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
|
|
|
|
|
|
516 |
|
517 |
-
#
|
518 |
-
|
519 |
'ventas_reales': 'sum',
|
520 |
'ventas_predichas': 'sum'
|
521 |
}).reset_index()
|
522 |
|
523 |
-
#
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
else:
|
590 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
591 |
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
fig = radar_chart(manufacturers, values, amounts, f'Gráfico de radar para los {len(manufacturers)} principales fabricantes del cliente {customer_code}')
|
598 |
-
st.pyplot(fig)
|
599 |
-
|
600 |
-
# Column 2: Alerts and additional analysis
|
601 |
-
with col2:
|
602 |
-
st.subheader("¡Puede que tengas que revisar esto!")
|
603 |
-
st.warning("Se esperaba que tu cliente comprara más productos de las siguientes marcas:")
|
604 |
-
|
605 |
-
# Group results by manufacturer to calculate the total predicted and actual sales
|
606 |
-
grouped_results = results.groupby('marca_id_encoded').agg({
|
607 |
-
'ventas_reales': 'sum',
|
608 |
-
'ventas_predichas': 'sum'
|
609 |
-
}).reset_index()
|
610 |
-
|
611 |
-
# Identify manufacturers that didn't meet predicted sales
|
612 |
-
underperforming_manufacturers = grouped_results[grouped_results['ventas_reales'] < grouped_results['ventas_predichas']].copy()
|
613 |
-
|
614 |
-
if not underperforming_manufacturers.empty:
|
615 |
-
# Calculate the missed amount
|
616 |
-
underperforming_manufacturers['missed_amount'] = underperforming_manufacturers['ventas_predichas'] - underperforming_manufacturers['ventas_reales']
|
617 |
-
|
618 |
-
# Sort by the highest missed amount
|
619 |
-
underperforming_manufacturers = underperforming_manufacturers.sort_values(by='missed_amount', ascending=False)
|
620 |
-
|
621 |
-
# Limit to top 10 missed amounts
|
622 |
-
top_misses = underperforming_manufacturers.head(10)
|
623 |
-
|
624 |
-
# Display two cards per row
|
625 |
-
for i in range(0, len(top_misses), 2):
|
626 |
-
cols = st.columns(2) # Create two columns for two cards in a row
|
627 |
-
|
628 |
-
for j, col in enumerate(cols):
|
629 |
-
if i + j < len(top_misses):
|
630 |
-
row = top_misses.iloc[i + j]
|
631 |
-
manufacturer_name = get_supplier_name_encoded(row['marca_id_encoded'])
|
632 |
-
predicted = row['ventas_predichas']
|
633 |
-
actual = row['ventas_reales']
|
634 |
-
missed = row['missed_amount']
|
635 |
-
|
636 |
-
# Use st.metric for compact display in each column
|
637 |
-
with col:
|
638 |
-
st.metric(
|
639 |
-
label=f"{manufacturer_name}",
|
640 |
-
value=f"{actual:.2f}€",
|
641 |
-
delta=f"Missed by {missed:.2f}€",
|
642 |
-
delta_color="inverse"
|
643 |
-
)
|
644 |
-
else:
|
645 |
-
st.success("All manufacturers have met or exceeded predicted sales.")
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
# Gráfico de ventas anuales
|
650 |
-
ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip()
|
651 |
-
|
652 |
-
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
653 |
-
if all(col in ventas_clientes.columns for col in sales_columns):
|
654 |
-
customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
655 |
-
|
656 |
-
if not customer_sales_data.empty:
|
657 |
-
customer_sales = customer_sales_data[sales_columns].values[0]
|
658 |
-
years = ['2021', '2022', '2023']
|
659 |
-
|
660 |
-
# Convert 'fecha_mes' to datetime format if it's not already
|
661 |
-
if not pd.api.types.is_datetime64_any_dtype(results['fecha_mes']):
|
662 |
-
results['fecha_mes'] = pd.to_datetime(results['fecha_mes'], errors='coerce')
|
663 |
-
|
664 |
-
# Add the 2024 actual and predicted data
|
665 |
-
if 'ventas_predichas' in results.columns and 'ventas_reales' in results.columns:
|
666 |
-
actual_sales_2024 = results[results['fecha_mes'].dt.year == 2024]['ventas_reales'].sum()
|
667 |
-
predicted_sales_2024 = results[results['fecha_mes'].dt.year == 2024]['ventas_predichas'].sum()
|
668 |
-
|
669 |
-
# Assuming only 9 months of actual data are available, annualize the sales
|
670 |
-
months_available = 9
|
671 |
-
actual_sales_2024_annual = (actual_sales_2024 / months_available) * 12
|
672 |
-
|
673 |
-
# Prepare data for the bar chart
|
674 |
-
sales_values = list(customer_sales) + [actual_sales_2024_annual]
|
675 |
-
predicted_values = list(customer_sales) + [predicted_sales_2024]
|
676 |
-
|
677 |
-
years.append('2024')
|
678 |
-
|
679 |
-
# Create the bar chart for historical and 2024 data
|
680 |
-
fig_sales_bar = go.Figure()
|
681 |
-
fig_sales_bar.add_trace(go.Bar(
|
682 |
-
x=years[:3],
|
683 |
-
y=sales_values[:3],
|
684 |
-
name="Historical Sales",
|
685 |
-
marker_color='blue'
|
686 |
-
))
|
687 |
-
|
688 |
-
fig_sales_bar.add_trace(go.Bar(
|
689 |
-
x=[years[3]],
|
690 |
-
y=[sales_values[3]],
|
691 |
-
name="2024 Actual Sales (Annualized)",
|
692 |
-
marker_color='green'
|
693 |
-
))
|
694 |
-
|
695 |
-
fig_sales_bar.add_trace(go.Bar(
|
696 |
-
x=[years[3]],
|
697 |
-
y=[predicted_values[3]],
|
698 |
-
name="2024 Predicted Sales",
|
699 |
-
marker_color='orange'
|
700 |
-
))
|
701 |
-
|
702 |
-
# Customize layout
|
703 |
-
fig_sales_bar.update_layout(
|
704 |
-
title=f"Ventas anuales de tu cliente",
|
705 |
-
xaxis_title="Year",
|
706 |
-
yaxis_title="Sales (€)",
|
707 |
-
barmode='group',
|
708 |
-
height=600,
|
709 |
-
legend_title_text="Sales Type",
|
710 |
-
hovermode="x unified"
|
711 |
-
)
|
712 |
-
|
713 |
-
# Display the chart
|
714 |
-
st.plotly_chart(fig_sales_bar, use_container_width=True)
|
715 |
-
|
716 |
-
else:
|
717 |
-
st.warning(f"No predicted or actual data found for customer {customer_code} for 2024.")
|
718 |
|
719 |
# Customer Recommendations Page
|
720 |
elif page == "💡 Recomendación de Artículos":
|
|
|
326 |
|
327 |
if not customer_match.empty:
|
328 |
cluster = customer_match['cluster_id'].values[0]
|
329 |
+
|
330 |
+
if fabricante_seleccionado == "Todos":
|
331 |
+
# Actuar como el comportamiento actual
|
332 |
+
with st.spinner(f"Seleccionando el modelo predictivo..."):
|
333 |
+
# Load the Corresponding Model
|
334 |
+
model_path = f'models/modelo_cluster_{cluster}.txt'
|
335 |
+
gbm = lgb.Booster(model_file=model_path)
|
336 |
+
|
337 |
+
with st.spinner("Preparando los datos..."):
|
338 |
+
# Load predict data for that cluster
|
339 |
+
predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
+
# Convert cliente_id to string
|
342 |
+
predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
343 |
+
|
344 |
+
with st.spinner("Filtrando data..."):
|
345 |
+
# Filter for the specific customer
|
346 |
+
customer_code_str = str(customer_code)
|
347 |
+
customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
|
348 |
+
|
349 |
+
with st.spinner("Geneerando predicciones de venta..."):
|
350 |
+
if not customer_data.empty:
|
351 |
+
# Define features consistently with the training process
|
352 |
+
lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
353 |
+
features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
354 |
+
|
355 |
+
# Prepare data for prediction
|
356 |
+
X_predict = customer_data[features]
|
357 |
+
|
358 |
+
# Convert categorical features to 'category' dtype
|
359 |
+
categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
360 |
+
for feature in categorical_features:
|
361 |
+
X_predict[feature] = X_predict[feature].astype('category')
|
362 |
+
|
363 |
+
# Make Prediction for the selected customer
|
364 |
+
y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
365 |
+
|
366 |
+
# Reassemble the results
|
367 |
+
results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
368 |
+
results['ventas_predichas'] = y_pred
|
369 |
+
|
370 |
+
# Load actual data from df_agg_2024
|
371 |
+
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
|
372 |
+
|
373 |
+
if not actual_sales.empty:
|
374 |
+
# Merge predictions with actual sales
|
375 |
+
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
376 |
+
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
377 |
+
how='left')
|
378 |
+
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
379 |
+
else:
|
380 |
+
# If no actual sales data for 2024, fill 'ventas_reales' with 0
|
381 |
+
results['ventas_reales'] = 0
|
382 |
|
383 |
+
# Ensure any missing sales data is filled with 0
|
384 |
+
results['ventas_reales'].fillna(0, inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
+
# Define the cutoff date for the last 12 months
|
387 |
+
fecha_inicio = pd.to_datetime("2023-01-01")
|
388 |
+
fecha_corte = pd.to_datetime("2024-09-01")
|
389 |
|
390 |
+
# Convertir fecha_mes a datetime en el DataFrame historical_data
|
391 |
+
historical_data['fecha_mes'] = pd.to_datetime(historical_data['fecha_mes'], errors='coerce')
|
|
|
|
|
392 |
|
393 |
+
# Ensure cliente_id is of type string and strip any leading/trailing whitespace
|
394 |
+
historical_data['cliente_id'] = historical_data['cliente_id'].astype(str).str.strip()
|
395 |
+
customer_code_str = str(customer_code).strip() # Ensure the customer code is also properly formatted
|
396 |
|
397 |
+
filtered_historical_data = historical_data[historical_data['cliente_id'] == customer_code_str]
|
|
|
|
|
|
|
|
|
398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
+
# Filtrar los datos históricos por cliente y por el rango de fechas (2023)
|
401 |
+
fecha_inicio_2023 = pd.to_datetime("2023-01-01")
|
402 |
+
fecha_fin_2023 = pd.to_datetime("2023-12-31")
|
403 |
|
404 |
+
datos_historicos = historical_data[
|
405 |
+
(historical_data['cliente_id'] == customer_code_str) &
|
406 |
+
(historical_data['fecha_mes'] >= fecha_inicio_2023) &
|
407 |
+
(historical_data['fecha_mes'] <= fecha_fin_2023)
|
408 |
+
].groupby('fecha_mes')['precio_total'].sum().reset_index()
|
409 |
|
410 |
+
# Renombrar la columna 'precio_total' a 'ventas_historicas' si no está vacía
|
411 |
+
if not datos_historicos.empty:
|
412 |
+
datos_historicos.rename(columns={'precio_total': 'ventas_historicas'}, inplace=True)
|
413 |
+
else:
|
414 |
+
# Si los datos históricos están vacíos, generar fechas de 2023 con ventas_historicas = 0
|
415 |
+
fechas_2023 = pd.date_range(start='2023-01-01', end='2023-12-31', freq='M')
|
416 |
+
datos_historicos = pd.DataFrame({'fecha_mes': fechas_2023, 'ventas_historicas': [0] * len(fechas_2023)})
|
417 |
|
418 |
+
# Filtrar los datos de predicciones y ventas reales para 2024
|
419 |
+
datos_cliente_total = results.groupby('fecha_mes').agg({
|
420 |
'ventas_reales': 'sum',
|
421 |
'ventas_predichas': 'sum'
|
422 |
}).reset_index()
|
423 |
|
424 |
+
# Asegurarnos de que fecha_mes en datos_cliente_total es datetime
|
425 |
+
datos_cliente_total['fecha_mes'] = pd.to_datetime(datos_cliente_total['fecha_mes'], errors='coerce')
|
426 |
+
|
427 |
+
# Generar un rango de fechas para 2024 si no hay predicciones
|
428 |
+
fechas_2024 = pd.date_range(start='2024-01-01', end='2024-12-31', freq='M')
|
429 |
+
fechas_df_2024 = pd.DataFrame({'fecha_mes': fechas_2024})
|
430 |
+
|
431 |
+
# Asegurarnos de que fecha_mes en fechas_df_2024 es datetime
|
432 |
+
fechas_df_2024['fecha_mes'] = pd.to_datetime(fechas_df_2024['fecha_mes'], errors='coerce')
|
433 |
+
|
434 |
+
# Combinar datos históricos con predicciones y ventas reales usando un merge
|
435 |
+
# Usamos how='outer' para asegurarnos de incluir todas las fechas de 2023 y 2024
|
436 |
+
datos_combinados = pd.merge(datos_historicos, datos_cliente_total, on='fecha_mes', how='outer').sort_values('fecha_mes')
|
437 |
+
|
438 |
+
# Rellenar los NaN: 0 en ventas_historicas donde faltan predicciones, y viceversa
|
439 |
+
datos_combinados['ventas_historicas'].fillna(0, inplace=True)
|
440 |
+
datos_combinados['ventas_predichas'].fillna(0, inplace=True)
|
441 |
+
datos_combinados['ventas_reales'].fillna(0, inplace=True)
|
442 |
+
|
443 |
+
# Crear la gráfica con Plotly
|
444 |
+
fig = go.Figure()
|
445 |
+
|
446 |
+
# Graficar ventas históricas
|
447 |
+
fig.add_trace(go.Scatter(
|
448 |
+
x=datos_combinados['fecha_mes'],
|
449 |
+
y=datos_combinados['ventas_historicas'],
|
450 |
+
mode='lines+markers',
|
451 |
+
name='Ventas Históricas',
|
452 |
+
line=dict(color='blue')
|
453 |
+
))
|
454 |
+
|
455 |
+
# Graficar ventas predichas
|
456 |
+
fig.add_trace(go.Scatter(
|
457 |
+
x=datos_combinados['fecha_mes'],
|
458 |
+
y=datos_combinados['ventas_predichas'],
|
459 |
+
mode='lines+markers',
|
460 |
+
name='Ventas Predichas',
|
461 |
+
line=dict(color='orange')
|
462 |
+
))
|
463 |
+
|
464 |
+
# Graficar ventas reales
|
465 |
+
fig.add_trace(go.Scatter(
|
466 |
+
x=datos_combinados['fecha_mes'],
|
467 |
+
y=datos_combinados['ventas_reales'],
|
468 |
+
mode='lines+markers',
|
469 |
+
name='Ventas Reales',
|
470 |
+
line=dict(color='green')
|
471 |
+
))
|
472 |
+
|
473 |
+
# Personalizar el layout para enfocarse en 2023 y 2024
|
474 |
+
fig.update_layout(
|
475 |
+
title=f"Ventas Históricas, Predichas y Reales para Cliente {customer_code}",
|
476 |
+
xaxis_title="Fecha",
|
477 |
+
yaxis_title="Ventas (€)",
|
478 |
+
height=600,
|
479 |
+
xaxis_range=[fecha_inicio_2023, pd.to_datetime("2024-09-30")], # Ajustar el rango del eje x a 2023-2024
|
480 |
+
legend_title="Tipo de Ventas",
|
481 |
+
hovermode="x unified"
|
482 |
+
)
|
483 |
+
|
484 |
+
# Mostrar la gráfica en Streamlit
|
485 |
+
st.plotly_chart(fig)
|
486 |
+
|
487 |
+
# Calculate metrics for 2024 data
|
488 |
+
datos_2024 = datos_combinados[datos_combinados['fecha_mes'].dt.year == 2024]
|
489 |
+
actual = datos_2024['ventas_reales']
|
490 |
+
predicted = datos_2024['ventas_predichas']
|
491 |
+
|
492 |
+
def calculate_mape(y_true, y_pred):
|
493 |
+
mask = y_true != 0
|
494 |
+
return np.mean(np.abs((y_true[mask] - y_pred[mask]) / y_true[mask])) * 100
|
495 |
+
|
496 |
+
mae = mean_absolute_error(actual, predicted)
|
497 |
+
mse = mean_squared_error(actual, predicted)
|
498 |
+
rmse = np.sqrt(mse)
|
499 |
+
mape = calculate_mape(actual, predicted)
|
500 |
+
smape = np.mean(2 * np.abs(actual - predicted) / (np.abs(actual) + np.abs(predicted))) * 100
|
501 |
+
|
502 |
+
# Display metrics
|
503 |
+
st.subheader("Métricas de Predicción (2024)")
|
504 |
+
col1, col2, col3, col4 = st.columns(4)
|
505 |
+
col1.metric("MAE", f"{mae:.2f} €",help="Promedio de la diferencia absoluta entre las predicciones y los valores reales.")
|
506 |
+
col2.metric("MAPE", f"{mape:.2f}%",help="Porcentaje promedio de error en las predicciones.")
|
507 |
+
col3.metric("RMSE", f"{rmse:.2f} €",help="Medida de la desviación estándar de los residuos de predicción.")
|
508 |
+
col4.metric("SMAPE", f"{smape:.2f}%",help="Alternativa al MAPE que maneja mejor los valores cercanos a cero.")
|
509 |
+
|
510 |
+
|
511 |
+
# Split space into two columns
|
512 |
+
col1, col2 = st.columns(2)
|
513 |
+
|
514 |
+
# Column 1: Radar chart for top manufacturers
|
515 |
+
with col1:
|
516 |
+
st.subheader("¡Esto tiene buena pinta!")
|
517 |
+
st.info("Su cliente ha superado las ventas predichas de las siguientes marcas:")
|
518 |
+
|
519 |
+
# Group results by manufacturer to calculate the total predicted and actual sales
|
520 |
+
grouped_results = results.groupby('marca_id_encoded').agg({
|
521 |
+
'ventas_reales': 'sum',
|
522 |
+
'ventas_predichas': 'sum'
|
523 |
+
}).reset_index()
|
524 |
+
|
525 |
+
# Identify manufacturers that exceeded predicted sales
|
526 |
+
overperforming_manufacturers = grouped_results[grouped_results['ventas_reales'] > grouped_results['ventas_predichas']].copy()
|
527 |
+
|
528 |
+
if not overperforming_manufacturers.empty:
|
529 |
+
# Calculate the extra amount (difference between actual and predicted sales)
|
530 |
+
overperforming_manufacturers['extra_amount'] = overperforming_manufacturers['ventas_reales'] - overperforming_manufacturers['ventas_predichas']
|
531 |
+
|
532 |
+
# Sort by the highest extra amount
|
533 |
+
overperforming_manufacturers = overperforming_manufacturers.sort_values(by='extra_amount', ascending=False)
|
534 |
+
|
535 |
+
# Limit to top 10 overperforming manufacturers
|
536 |
+
top_overperformers = overperforming_manufacturers.head(10)
|
537 |
+
|
538 |
+
# Display two cards per row
|
539 |
+
for i in range(0, len(top_overperformers), 2):
|
540 |
+
cols = st.columns(2) # Create two columns for two cards in a row
|
541 |
+
|
542 |
+
for j, col in enumerate(cols):
|
543 |
+
if i + j < len(top_overperformers):
|
544 |
+
row = top_overperformers.iloc[i + j]
|
545 |
+
manufacturer_name = get_supplier_name_encoded(row['marca_id_encoded'])
|
546 |
+
predicted = row['ventas_predichas']
|
547 |
+
actual = row['ventas_reales']
|
548 |
+
extra = row['extra_amount']
|
549 |
+
|
550 |
+
# Use st.metric for compact display in each column
|
551 |
+
with col:
|
552 |
+
st.metric(
|
553 |
+
label=f"{manufacturer_name}",
|
554 |
+
value=f"{actual:.2f}€",
|
555 |
+
delta=f"Exceeded by {extra:.2f}€",
|
556 |
+
delta_color="normal"
|
557 |
+
)
|
558 |
+
|
559 |
+
|
560 |
+
# Radar chart logic remains the same
|
561 |
+
customer_df = df[df["CLIENTE"] == str(customer_code)]
|
562 |
+
all_manufacturers = customer_df.iloc[:, 1:].T
|
563 |
+
all_manufacturers.index = all_manufacturers.index.astype(str)
|
564 |
+
|
565 |
+
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
|
566 |
+
sales_data = customer_euros.iloc[:, 1:].T
|
567 |
+
sales_data.index = sales_data.index.astype(str)
|
568 |
+
|
569 |
+
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
|
570 |
+
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
|
571 |
+
all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
572 |
+
|
573 |
+
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
|
574 |
+
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
|
575 |
+
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
576 |
+
|
577 |
+
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
|
578 |
+
|
579 |
+
if combined_top:
|
580 |
+
combined_data = pd.DataFrame({
|
581 |
+
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
|
582 |
+
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
|
583 |
+
}).fillna(0)
|
584 |
+
|
585 |
+
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
|
586 |
+
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
|
587 |
+
|
588 |
+
if len(non_zero_manufacturers) < 3:
|
589 |
+
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
|
590 |
+
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
|
591 |
+
else:
|
592 |
+
manufacturers_to_show = non_zero_manufacturers
|
593 |
+
|
594 |
+
values = manufacturers_to_show['units'].tolist()
|
595 |
+
amounts = manufacturers_to_show['sales'].tolist()
|
596 |
+
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
|
597 |
+
|
598 |
+
if manufacturers:
|
599 |
+
fig = radar_chart(manufacturers, values, amounts, f'Gráfico de radar para los {len(manufacturers)} principales fabricantes del cliente {customer_code}')
|
600 |
+
st.pyplot(fig)
|
601 |
+
|
602 |
+
# Column 2: Alerts and additional analysis
|
603 |
+
with col2:
|
604 |
+
st.subheader("¡Puede que tengas que revisar esto!")
|
605 |
+
st.warning("Se esperaba que tu cliente comprara más productos de las siguientes marcas:")
|
606 |
+
|
607 |
+
# Group results by manufacturer to calculate the total predicted and actual sales
|
608 |
+
grouped_results = results.groupby('marca_id_encoded').agg({
|
609 |
+
'ventas_reales': 'sum',
|
610 |
+
'ventas_predichas': 'sum'
|
611 |
+
}).reset_index()
|
612 |
+
|
613 |
+
# Identify manufacturers that didn't meet predicted sales
|
614 |
+
underperforming_manufacturers = grouped_results[grouped_results['ventas_reales'] < grouped_results['ventas_predichas']].copy()
|
615 |
+
|
616 |
+
if not underperforming_manufacturers.empty:
|
617 |
+
# Calculate the missed amount
|
618 |
+
underperforming_manufacturers['missed_amount'] = underperforming_manufacturers['ventas_predichas'] - underperforming_manufacturers['ventas_reales']
|
619 |
+
|
620 |
+
# Sort by the highest missed amount
|
621 |
+
underperforming_manufacturers = underperforming_manufacturers.sort_values(by='missed_amount', ascending=False)
|
622 |
+
|
623 |
+
# Limit to top 10 missed amounts
|
624 |
+
top_misses = underperforming_manufacturers.head(10)
|
625 |
+
|
626 |
+
# Display two cards per row
|
627 |
+
for i in range(0, len(top_misses), 2):
|
628 |
+
cols = st.columns(2) # Create two columns for two cards in a row
|
629 |
+
|
630 |
+
for j, col in enumerate(cols):
|
631 |
+
if i + j < len(top_misses):
|
632 |
+
row = top_misses.iloc[i + j]
|
633 |
+
manufacturer_name = get_supplier_name_encoded(row['marca_id_encoded'])
|
634 |
+
predicted = row['ventas_predichas']
|
635 |
+
actual = row['ventas_reales']
|
636 |
+
missed = row['missed_amount']
|
637 |
+
|
638 |
+
# Use st.metric for compact display in each column
|
639 |
+
with col:
|
640 |
+
st.metric(
|
641 |
+
label=f"{manufacturer_name}",
|
642 |
+
value=f"{actual:.2f}€",
|
643 |
+
delta=f"Missed by {missed:.2f}€",
|
644 |
+
delta_color="inverse"
|
645 |
+
)
|
646 |
else:
|
647 |
+
st.success("All manufacturers have met or exceeded predicted sales.")
|
648 |
+
|
649 |
+
|
650 |
+
|
651 |
+
# Gráfico de ventas anuales
|
652 |
+
ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip()
|
653 |
+
|
654 |
+
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
655 |
+
if all(col in ventas_clientes.columns for col in sales_columns):
|
656 |
+
customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
657 |
+
|
658 |
+
if not customer_sales_data.empty:
|
659 |
+
customer_sales = customer_sales_data[sales_columns].values[0]
|
660 |
+
years = ['2021', '2022', '2023']
|
661 |
+
|
662 |
+
# Convert 'fecha_mes' to datetime format if it's not already
|
663 |
+
if not pd.api.types.is_datetime64_any_dtype(results['fecha_mes']):
|
664 |
+
results['fecha_mes'] = pd.to_datetime(results['fecha_mes'], errors='coerce')
|
665 |
+
|
666 |
+
# Add the 2024 actual and predicted data
|
667 |
+
if 'ventas_predichas' in results.columns and 'ventas_reales' in results.columns:
|
668 |
+
actual_sales_2024 = results[results['fecha_mes'].dt.year == 2024]['ventas_reales'].sum()
|
669 |
+
predicted_sales_2024 = results[results['fecha_mes'].dt.year == 2024]['ventas_predichas'].sum()
|
670 |
+
|
671 |
+
# Assuming only 9 months of actual data are available, annualize the sales
|
672 |
+
months_available = 9
|
673 |
+
actual_sales_2024_annual = (actual_sales_2024 / months_available) * 12
|
674 |
+
|
675 |
+
# Prepare data for the bar chart
|
676 |
+
sales_values = list(customer_sales) + [actual_sales_2024_annual]
|
677 |
+
predicted_values = list(customer_sales) + [predicted_sales_2024]
|
678 |
+
|
679 |
+
years.append('2024')
|
680 |
+
|
681 |
+
# Create the bar chart for historical and 2024 data
|
682 |
+
fig_sales_bar = go.Figure()
|
683 |
+
fig_sales_bar.add_trace(go.Bar(
|
684 |
+
x=years[:3],
|
685 |
+
y=sales_values[:3],
|
686 |
+
name="Historical Sales",
|
687 |
+
marker_color='blue'
|
688 |
+
))
|
689 |
+
|
690 |
+
fig_sales_bar.add_trace(go.Bar(
|
691 |
+
x=[years[3]],
|
692 |
+
y=[sales_values[3]],
|
693 |
+
name="2024 Actual Sales (Annualized)",
|
694 |
+
marker_color='green'
|
695 |
+
))
|
696 |
+
|
697 |
+
fig_sales_bar.add_trace(go.Bar(
|
698 |
+
x=[years[3]],
|
699 |
+
y=[predicted_values[3]],
|
700 |
+
name="2024 Predicted Sales",
|
701 |
+
marker_color='orange'
|
702 |
+
))
|
703 |
+
|
704 |
+
# Customize layout
|
705 |
+
fig_sales_bar.update_layout(
|
706 |
+
title=f"Ventas anuales de tu cliente",
|
707 |
+
xaxis_title="Year",
|
708 |
+
yaxis_title="Sales (€)",
|
709 |
+
barmode='group',
|
710 |
+
height=600,
|
711 |
+
legend_title_text="Sales Type",
|
712 |
+
hovermode="x unified"
|
713 |
+
)
|
714 |
+
|
715 |
+
# Display the chart
|
716 |
+
st.plotly_chart(fig_sales_bar, use_container_width=True)
|
717 |
+
|
718 |
+
else:
|
719 |
+
st.warning(f"No predicted or actual data found for customer {customer_code} for 2024.")
|
720 |
|
721 |
+
else:
|
722 |
+
with st.spinner(f"Mostrando datos para el fabricante {fabricante_seleccionado}..."):
|
723 |
+
# Mostrar el cliente y el fabricante seleccionados
|
724 |
+
st.write(f"**Cliente seleccionado:** {customer_code}")
|
725 |
+
st.write(f"**Fabricante seleccionado:** {fabricante_seleccionado}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
726 |
|
727 |
# Customer Recommendations Page
|
728 |
elif page == "💡 Recomendación de Artículos":
|