import streamlit as st import pandas as pd import plotly.express as px import matplotlib.pyplot as plt import numpy as np import lightgbm as lgb from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics import mean_absolute_error, mean_squared_error from joblib import dump, load from utils import recomienda_tfid # Page configuration st.set_page_config(page_title="DeepInsightz", page_icon=":bar_chart:", layout="wide") # Load CSV files at the top df = pd.read_csv("df_clean.csv") nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';') euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',') ventas_clientes = pd.read_csv("ventas_clientes.csv", sep=',') customer_clusters = pd.read_csv('predicts/customer_clusters.csv') # Load the customer clusters here df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv') # Ensure customer codes are strings df['CLIENTE'] = df['CLIENTE'].astype(str) nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str) euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str) customer_clusters['cliente_id'] = customer_clusters['cliente_id'].astype(str) # Ensure customer IDs are strings fieles_df = pd.read_csv("clientes_relevantes.csv") cestas = pd.read_csv("cestas.csv") productos = pd.read_csv("productos.csv") df_agg_2024['cliente_id'] = df_agg_2024['cliente_id'].astype(str) # Convert all columns except 'CLIENTE' to float in euros_proveedor for col in euros_proveedor.columns: if col != 'CLIENTE': euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce') # Check for NaN values after conversion if euros_proveedor.isna().any().any(): st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.") # Ignore the last two columns of df df = df.iloc[:, :-2] # Function to get supplier name def get_supplier_name(code): code = str(code) # Ensure code is a string name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values return name[0] if len(name) > 0 else code # Function to create radar chart with square root transformation def radar_chart(categories, values, amounts, title): N = len(categories) angles = [n / float(N) * 2 * np.pi for n in range(N)] angles += angles[:1] fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar')) # Apply square root transformation sqrt_values = np.sqrt(values) sqrt_amounts = np.sqrt(amounts) max_sqrt_value = max(sqrt_values) normalized_values = [v / max_sqrt_value for v in sqrt_values] # Adjust scaling for spend values max_sqrt_amount = max(sqrt_amounts) scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts] normalized_values += normalized_values[:1] ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)') ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4') normalized_amounts += normalized_amounts[:1] ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)') ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082') ax.set_xticks(angles[:-1]) ax.set_xticklabels(categories, size=8, wrap=True) ax.set_ylim(0, 1) circles = np.linspace(0, 1, 5) for circle in circles: ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5) ax.set_yticklabels([]) ax.spines['polar'].set_visible(False) plt.title(title, size=16, y=1.1) plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1)) return fig # Custom CSS for dark theme and styling st.markdown(""" """, unsafe_allow_html=True) # Navigation menu st.sidebar.title("DeepInsightz") page = st.sidebar.selectbox("Select the tool you want to use", ["Home", "Customer Analysis", "Articles Recommendations"]) if page == "Home": st.title("Welcome to DeepInsightz") st.markdown(""" ### Data-driven Customer Clustering At DeepInsightz, we analyzed 4,000 customers, 400 suppliers, and over 800,000 sales lines to help businesses make smarter sales decisions. """) # 1. Quick Metrics for Data Preparation st.subheader("Data Preparation Overview") st.write(""" - **Customers Analyzed**: 4,000 - **Suppliers Analyzed**: 400 - **Invoice Lines Processed**: 800,000 """) st.info("The data was cleaned, duplicate entries were removed, and we standardized product codes and descriptions. We excluded customers with less than 12 purchases or total sales below €1,200 in 2024.") # 2. Customer Distribution st.subheader("Customer Distribution by Purchase Volume") # Example data: distribution of customers by purchase volume data = { 'Threshold (Items Purchased)': ['>1,000 items', '>5,000 items', '>10,000 items', '>20,000 items', '>50,000 items'], 'Number of Customers': [411, 180, 93, 47, 12], 'Percentage': [10, 4, 2, 1, 0.3] } df_customers = pd.DataFrame(data) fig_customers = px.bar(df_customers, x='Threshold (Items Purchased)', y='Number of Customers', title="Distribution of Customers by Purchase Volume") st.plotly_chart(fig_customers) # 3. Interactive Cluster Visualization (placeholder) st.subheader("3D Cluster Visualization") st.write("Explore the customer clusters and their product purchase behavior.") # Sample random data for a 3D cluster (replace with actual cluster data) np.random.seed(42) df_cluster = pd.DataFrame({ 'Cluster': np.random.choice(['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster 5'], 100), 'x': np.random.randn(100), 'y': np.random.randn(100), 'z': np.random.randn(100) }) fig_cluster = px.scatter_3d(df_cluster, x='x', y='y', z='z', color='Cluster', title="Customer Clusters (3D View)") st.plotly_chart(fig_cluster) # 4. Product Groups vs Manufacturer st.subheader("Product Group vs Manufacturer Distribution") st.write("See how different manufacturers align with various product groups purchased by customers.") # Example data for product groups vs manufacturers (replace with real data) prod_data = { 'Product Group': ['Group A', 'Group B', 'Group C', 'Group D', 'Group E'], 'Manufacturer 1': [25, 40, 35, 30, 50], 'Manufacturer 2': [30, 35, 30, 45, 40], 'Manufacturer 3': [35, 25, 40, 25, 35] } df_prod_manu = pd.DataFrame(prod_data) fig_prod_manu = px.bar(df_prod_manu, x='Product Group', y=['Manufacturer 1', 'Manufacturer 2', 'Manufacturer 3'], title="Manufacturer Distribution Across Product Groups") st.plotly_chart(fig_prod_manu) # 5. Call to Action st.markdown(""" ## Ready to Explore the Customer Clusters Further? - Use the tools in the sidebar to dive deeper into **Customer Analysis** or get **Product Recommendations**. """) # Customer Analysis Page elif page == "Customer Analysis": st.title("Customer Analysis") st.markdown("Use the tools below to explore your customer data.") partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)") if partial_code: filtered_customers = df[df['CLIENTE'].str.contains(partial_code)] else: filtered_customers = df customer_list = filtered_customers['CLIENTE'].unique() customer_code = st.selectbox("Select Customer Code", customer_list) if st.button("Calcular"): if customer_code: # Find Customer's Cluster customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code] if not customer_match.empty: cluster = customer_match['cluster_id'].values[0] st.write(f"Customer {customer_code} belongs to cluster {cluster}") # Load the Corresponding Model model_path = f'models/modelo_cluster_{cluster}.txt' gbm = lgb.Booster(model_file=model_path) st.write(f"Loaded model for cluster {cluster}") # Inspect the model st.write("### Model Information:") st.write(f"Number of trees: {gbm.num_trees()}") st.write(f"Number of features: {gbm.num_feature()}") st.write("Feature names:") st.write(gbm.feature_name()) # Load predict data for that cluster predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv') # Convert cliente_id to string predict_data['cliente_id'] = predict_data['cliente_id'].astype(str) st.write("### Predict Data DataFrame:") st.write(predict_data.head()) st.write(f"Shape: {predict_data.shape}") # Filter for the specific customer customer_code_str = str(customer_code) customer_data = predict_data[predict_data['cliente_id'] == customer_code_str] # Add debug statements st.write(f"Unique customer IDs in predict data: {predict_data['cliente_id'].unique()}") st.write(f"Customer code we're looking for: {customer_code_str}") st.write("### Customer Data:") st.write(customer_data.head()) st.write(f"Shape: {customer_data.shape}") if not customer_data.empty: # Define features consistently with the training process lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)] features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id'] # Prepare data for prediction X_predict = customer_data[features] # Convert categorical features to 'category' dtype categorical_features = ['mes', 'marca_id_encoded', 'cluster_id'] for feature in categorical_features: X_predict[feature] = X_predict[feature].astype('category') st.write("### Features for Prediction:") st.write(X_predict.head()) st.write(f"Shape: {X_predict.shape}") st.write("Data types:") st.write(X_predict.dtypes) # Make Prediction for the selected customer y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration) st.write("### Prediction Results:") st.write(f"Type of y_pred: {type(y_pred)}") st.write(f"Shape of y_pred: {y_pred.shape}") st.write("First few predictions:") st.write(y_pred[:5]) # Reassemble the results results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy() results['ventas_predichas'] = y_pred st.write("### Results DataFrame:") st.write(results.head()) st.write(f"Shape: {results.shape}") st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}") # Load actual data actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str] st.write("### Actual Sales DataFrame:") st.write(actual_sales.head()) st.write(f"Shape: {actual_sales.shape}") if not actual_sales.empty: results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']], on=['cliente_id', 'marca_id_encoded', 'fecha_mes'], how='left') results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True) results['ventas_reales'].fillna(0, inplace=True) st.write("### Final Results DataFrame:") st.write(results.head()) st.write(f"Shape: {results.shape}") # Calculate metrics only for non-null actual sales valid_results = results.dropna(subset=['ventas_reales']) if not valid_results.empty: mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas']) mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100 rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])) st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}") st.write(f"MAE: {mae:.2f}") st.write(f"MAPE: {mape:.2f}%") st.write(f"RMSE: {rmse:.2f}") # Analysis of results threshold_good = 100 # You may want to adjust this threshold if mae < threshold_good: st.success(f"Customer {customer_code} is performing well based on the predictions.") else: st.warning(f"Customer {customer_code} is not performing well based on the predictions.") else: st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.") st.write("### Debug Information for Radar Chart:") st.write(f"Shape of customer_data: {customer_data.shape}") st.write(f"Shape of euros_proveedor: {euros_proveedor.shape}") # Get percentage of units sold for each manufacturer customer_df = df[df["CLIENTE"] == str(customer_code)] # Get the customer data all_manufacturers = customer_df.iloc[:, 1:].T # Exclude CLIENTE column (manufacturers are in columns) all_manufacturers.index = all_manufacturers.index.astype(str) # Get total sales for each manufacturer from euros_proveedor customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)] sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column sales_data.index = sales_data.index.astype(str) # Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore') # Ensure all values are numeric sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce') all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce') # Sort manufacturers by percentage of units and get top 10 top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10) # Sort manufacturers by total sales and get top 10 top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10) # Combine top manufacturers from both lists and get up to 20 unique manufacturers combined_top = pd.concat([top_units, top_sales]).index.unique()[:20] # Filter out manufacturers that are not present in both datasets combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index] st.write(f"Number of combined top manufacturers: {len(combined_top)}") if combined_top: # Create a DataFrame with combined data for these top manufacturers combined_data = pd.DataFrame({ 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]], 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]] }).fillna(0) # Sort by units, then by sales combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False) # Filter out manufacturers with 0 units non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0] # If we have less than 3 non-zero manufacturers, add some zero-value ones if len(non_zero_manufacturers) < 3: zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers)) manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers]) else: manufacturers_to_show = non_zero_manufacturers values = manufacturers_to_show['units'].tolist() amounts = manufacturers_to_show['sales'].tolist() manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index] st.write(f"### Results for top {len(manufacturers)} manufacturers:") for manufacturer, value, amount in zip(manufacturers, values, amounts): st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales") if manufacturers: # Only create the chart if we have data fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}') st.pyplot(fig) else: st.warning("No data available to create the radar chart.") else: st.warning("No combined top manufacturers found.") # Ensure codigo_cliente in ventas_clientes is a string ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip() # Ensure customer_code is a string and strip any spaces customer_code = str(customer_code).strip() if customer_code in ventas_clientes['codigo_cliente'].unique(): st.write(f"Customer {customer_code} found in ventas_clientes") else: st.write(f"Customer {customer_code} not found in ventas_clientes") # Customer sales 2021-2024 (if data exists) sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023'] if all(col in ventas_clientes.columns for col in sales_columns): customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code] if not customer_sales_data.empty: customer_sales = customer_sales_data[sales_columns].values[0] years = ['2021', '2022', '2023'] fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}') fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales") st.plotly_chart(fig_sales) else: st.warning(f"No historical sales data found for customer {customer_code}") else: st.warning("Sales data for 2021-2023 not available in the dataset.") else: st.warning(f"No data found for customer {customer_code}. Please check the code.") else: st.warning("Please select a customer.") # Customer Recommendations Page elif page == "Articles Recommendations": st.title("Articles Recommendations") st.markdown(""" Get tailored recommendations for your customers based on their basket. """) st.write("Select items and assign quantities for the basket:") # Mostrar lista de artículos disponibles available_articles = productos['ARTICULO'].unique() selected_articles = st.multiselect("Select Articles", available_articles) # Crear inputs para ingresar las cantidades de cada artículo seleccionado quantities = {} for article in selected_articles: quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1) if st.button("Calcular"): # Añadimos el botón "Calcular" # Crear una lista de artículos basada en la selección new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0] if new_basket: # Procesar la lista para recomendar recommendations_df = recomienda_tfid(new_basket) if not recommendations_df.empty: st.write("### Recommendations based on the current basket:") st.dataframe(recommendations_df) else: st.warning("No recommendations found for the provided basket.") else: st.warning("Please select at least one article and set its quantity.") # # Customer Recommendations Page # elif page == "Articles Recommendations": # st.title("Articles Recommendations") # st.markdown(""" # Get tailored recommendations for your customers based on their basket. # """) # # Campo input para cliente # partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)") # if partial_code: # filtered_customers = df[df['CLIENTE'].str.contains(partial_code)] # else: # filtered_customers = df # customer_list = filtered_customers['CLIENTE'].unique() # customer_code = st.selectbox("Select Customer Code for Recommendations", [""] + list(customer_list)) # # Definición de la función recomienda # def recomienda(new_basket): # # Calcular la matriz TF-IDF # tfidf = TfidfVectorizer() # tfidf_matrix = tfidf.fit_transform(cestas['Cestas']) # # Convertir la nueva cesta en formato TF-IDF # new_basket_str = ' '.join(new_basket) # new_basket_tfidf = tfidf.transform([new_basket_str]) # # Comparar la nueva cesta con las anteriores # similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix) # # Obtener los índices de las cestas más similares # similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares # # Crear un diccionario para contar las recomendaciones # recommendations_count = {} # total_similarity = 0 # # Recomendar productos de cestas similares # for idx in similar_indices: # sim_score = similarities[0][idx] # total_similarity += sim_score # products = cestas.iloc[idx]['Cestas'].split() # for product in products: # if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta # if product.strip() in recommendations_count: # recommendations_count[product.strip()] += sim_score # else: # recommendations_count[product.strip()] = sim_score # # Calcular la probabilidad relativa de cada producto recomendado # recommendations_with_prob = [] # if total_similarity > 0: # Verificar que total_similarity no sea cero # recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()] # else: # print("No se encontraron similitudes suficientes para calcular probabilidades.") # recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación # # Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades # recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD']) # # Agregar las recomendaciones al DataFrame usando pd.concat # for product, prob in recommendations_with_prob: # # Buscar la descripción en el DataFrame de productos # description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION'] # if not description.empty: # # Crear un nuevo DataFrame temporal para la recomendación # temp_df = pd.DataFrame({ # 'ARTICULO': [product], # 'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado # 'PROBABILIDAD': [prob] # }) # # Concatenar el DataFrame temporal al DataFrame de recomendaciones # recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True) # return recommendations_df # # Comprobar si el cliente está en el CSV de fieles # is_fiel = customer_code in fieles_df['Cliente'].astype(str).values # if customer_code: # if is_fiel: # st.write(f"### Customer {customer_code} is a loyal customer.") # option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"]) # if option == "By Purchase History": # st.warning("Option not available... aún") # elif option == "By Current Basket": # st.write("Select the items and assign quantities for the basket:") # # Mostrar lista de artículos disponibles # available_articles = productos['ARTICULO'].unique() # selected_articles = st.multiselect("Select Articles", available_articles) # # Crear inputs para ingresar las cantidades de cada artículo seleccionado # quantities = {} # for article in selected_articles: # quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1) # if st.button("Calcular"): # Añadimos el botón "Calcular" # # Crear una lista de artículos basada en la selección # new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0] # if new_basket: # # Procesar la lista para recomendar # recommendations_df = recomienda(new_basket) # if not recommendations_df.empty: # st.write("### Recommendations based on the current basket:") # st.dataframe(recommendations_df) # else: # st.warning("No recommendations found for the provided basket.") # else: # st.warning("Please select at least one article and set its quantity.") # else: # st.write(f"### Customer {customer_code} is not a loyal customer.") # st.write("Select items and assign quantities for the basket:") # # Mostrar lista de artículos disponibles # available_articles = productos['ARTICULO'].unique() # selected_articles = st.multiselect("Select Articles", available_articles) # # Crear inputs para ingresar las cantidades de cada artículo seleccionado # quantities = {} # for article in selected_articles: # quantities[article] = st.number_input(f"Quantity for {article}", min_value=0, step=1) # if st.button("Calcular"): # Añadimos el botón "Calcular" # # Crear una lista de artículos basada en la selección # new_basket = [f"{article} x{quantities[article]}" for article in selected_articles if quantities[article] > 0] # if new_basket: # # Procesar la lista para recomendar # recommendations_df = recomienda(new_basket) # if not recommendations_df.empty: # st.write("### Recommendations based on the current basket:") # st.dataframe(recommendations_df) # else: # st.warning("No recommendations found for the provided basket.") # else: # st.warning("Please select at least one article and set its quantity.") # Customer Analysis Page # elif page == "Customer Analysis": # st.title("Customer Analysis") # st.markdown("Use the tools below to explore your customer data.") # partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)") # if partial_code: # filtered_customers = df[df['CLIENTE'].str.contains(partial_code)] # else: # filtered_customers = df # customer_list = filtered_customers['CLIENTE'].unique() # customer_code = st.selectbox("Select Customer Code", customer_list) # if st.button("Calcular"): # if customer_code: # # Find Customer's Cluster # customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code] # if not customer_match.empty: # cluster = customer_match['cluster_id'].values[0] # st.write(f"Customer {customer_code} belongs to cluster {cluster}") # # Load the Corresponding Model # model_path = f'models/modelo_cluster_{cluster}.txt' # gbm = lgb.Booster(model_file=model_path) # st.write(f"Loaded model for cluster {cluster}") # # Load X_predict for that cluster # X_predict_cluster = pd.read_csv(f'predicts/X_predict_cluster_{cluster}.csv') # # Filter for the specific customer # X_cliente = X_predict_cluster[X_predict_cluster['cliente_id'] == customer_code] # if not X_cliente.empty: # # Prepare data for prediction # features_for_prediction = X_cliente.drop(columns=['cliente_id', 'fecha_mes']) # # Make Prediction for the selected customer # y_pred = gbm.predict(features_for_prediction, num_iteration=gbm.best_iteration) # # Reassemble the results # results = X_cliente[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy() # results['ventas_predichas'] = y_pred # st.write(f"Predicted total sales for Customer {customer_code}: {results['ventas_predichas'].sum():.2f}") # # Load actual data # df_agg_2024 = pd.read_csv('predicts/df_agg_2024.csv') # actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code] # if not actual_sales.empty: # results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']], # on=['cliente_id', 'marca_id_encoded', 'fecha_mes'], # how='left') # results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True) # # Calculate metrics only for non-null actual sales # valid_results = results.dropna(subset=['ventas_reales']) # if not valid_results.empty: # mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas']) # mape = np.mean(np.abs((valid_results['ventas_reales'] - valid_results['ventas_predichas']) / valid_results['ventas_reales'])) * 100 # rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])) # st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}") # st.write(f"MAE: {mae:.2f}") # st.write(f"MAPE: {mape:.2f}%") # st.write(f"RMSE: {rmse:.2f}") # # Analysis of results # threshold_good = 100 # You may want to adjust this threshold # if mae < threshold_good: # st.success(f"Customer {customer_code} is performing well based on the predictions.") # else: # st.warning(f"Customer {customer_code} is not performing well based on the predictions.") # else: # st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.") # # Show the radar chart # all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column # all_manufacturers.index = all_manufacturers.index.astype(str) # sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column # sales_data.index = sales_data.index.astype(str) # sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore') # sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce') # top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10) # top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10) # combined_top = pd.concat([top_units, top_sales]).index.unique()[:20] # combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index] # combined_data = pd.DataFrame({ # 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]], # 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]] # }).fillna(0) # combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False) # non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0] # if len(non_zero_manufacturers) < 3: # zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers)) # manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers]) # else: # manufacturers_to_show = non_zero_manufacturers # values = manufacturers_to_show['units'].tolist() # amounts = manufacturers_to_show['sales'].tolist() # manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index] # st.write(f"### Results for top {len(manufacturers)} manufacturers:") # for manufacturer, value, amount in zip(manufacturers, values, amounts): # st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales") # if manufacturers: # fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}') # st.pyplot(fig) # else: # st.warning("No data available to create the radar chart.") # # Show sales over the years graph # sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023'] # if all(col in ventas_clientes.columns for col in sales_columns): # years = ['2021', '2022', '2023'] # customer_sales = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code][sales_columns].values[0] # fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}') # fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales") # st.plotly_chart(fig_sales) # else: # st.warning("Sales data for 2021-2023 not available.") # else: # st.warning(f"No prediction data found for customer {customer_code}.") # else: # st.warning(f"No data found for customer {customer_code}. Please check the code.") # else: # st.warning("Please select a customer.")