import streamlit as st import pandas as pd import plotly.express as px import matplotlib.pyplot as plt import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity # Page configuration st.set_page_config(page_title="Customer Insights App", page_icon=":bar_chart:") # Load CSV files df = pd.read_csv("df_clean.csv") nombres_proveedores = pd.read_csv("nombres_proveedores.csv", sep=';') euros_proveedor = pd.read_csv("euros_proveedor.csv", sep=',') # Ensure customer codes are strings df['CLIENTE'] = df['CLIENTE'].astype(str) nombres_proveedores['codigo'] = nombres_proveedores['codigo'].astype(str) euros_proveedor['CLIENTE'] = euros_proveedor['CLIENTE'].astype(str) fieles_df = pd.read_csv("clientes_relevantes.csv") # Cargo csv del histórico de cestas cestas = pd.read_csv("cestas.csv") # Cargo csv de productos y descripcion productos = pd.read_csv("productos.csv") # Convert all columns except 'CLIENTE' to float in euros_proveedor for col in euros_proveedor.columns: if col != 'CLIENTE': euros_proveedor[col] = pd.to_numeric(euros_proveedor[col], errors='coerce') # Check for NaN values after conversion if euros_proveedor.isna().any().any(): st.warning("Some values in euros_proveedor couldn't be converted to numbers. Please review the input data.") # Ignore the last two columns of df df = df.iloc[:, :-2] # Function to get supplier name def get_supplier_name(code): code = str(code) # Ensure code is a string name = nombres_proveedores[nombres_proveedores['codigo'] == code]['nombre'].values return name[0] if len(name) > 0 else code # Function to create radar chart with square root transformation def radar_chart(categories, values, amounts, title): N = len(categories) angles = [n / float(N) * 2 * np.pi for n in range(N)] angles += angles[:1] fig, ax = plt.subplots(figsize=(12, 12), subplot_kw=dict(projection='polar')) # Apply square root transformation sqrt_values = np.sqrt(values) sqrt_amounts = np.sqrt(amounts) max_sqrt_value = max(sqrt_values) normalized_values = [v / max_sqrt_value for v in sqrt_values] # Adjust scaling for spend values max_sqrt_amount = max(sqrt_amounts) scaling_factor = 0.7 # Adjust this value to control how much the spend values are scaled up normalized_amounts = [min((a / max_sqrt_amount) * scaling_factor, 1.0) for a in sqrt_amounts] normalized_values += normalized_values[:1] ax.plot(angles, normalized_values, 'o-', linewidth=2, color='#FF69B4', label='% Units (sqrt)') ax.fill(angles, normalized_values, alpha=0.25, color='#FF69B4') normalized_amounts += normalized_amounts[:1] ax.plot(angles, normalized_amounts, 'o-', linewidth=2, color='#4B0082', label='% Spend (sqrt)') ax.fill(angles, normalized_amounts, alpha=0.25, color='#4B0082') ax.set_xticks(angles[:-1]) ax.set_xticklabels(categories, size=8, wrap=True) ax.set_ylim(0, 1) circles = np.linspace(0, 1, 5) for circle in circles: ax.plot(angles, [circle]*len(angles), '--', color='gray', alpha=0.3, linewidth=0.5) ax.set_yticklabels([]) ax.spines['polar'].set_visible(False) plt.title(title, size=16, y=1.1) plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1.1)) return fig # Main page design st.title("Welcome to Customer Insights App") st.markdown(""" This app helps businesses analyze customer behaviors and provide personalized recommendations based on purchase history. Use the tools below to dive deeper into your customer data. """) # Navigation menu page = st.selectbox("Select the tool you want to use", ["", "Customer Analysis", "Articles Recommendations"]) # Home Page if page == "": st.markdown("## Welcome to the Customer Insights App") st.write("Use the dropdown menu to navigate between the different sections.") # Customer Analysis Page elif page == "Customer Analysis": st.title("Customer Analysis") st.markdown("Use the tools below to explore your customer data.") partial_code = st.text_input("Enter part of Customer Code (or leave empty to see all)") if partial_code: filtered_customers = df[df['CLIENTE'].str.contains(partial_code)] else: filtered_customers = df customer_list = filtered_customers['CLIENTE'].unique() customer_code = st.selectbox("Select Customer Code", customer_list) if customer_code: customer_data = df[df["CLIENTE"] == str(customer_code)] customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)] if not customer_data.empty and not customer_euros.empty: st.write(f"### Analysis for Customer {customer_code}") # Get percentage of units sold for each manufacturer all_manufacturers = customer_data.iloc[:, 1:].T # Exclude CLIENTE column all_manufacturers.index = all_manufacturers.index.astype(str) # Get total sales for each manufacturer sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column sales_data.index = sales_data.index.astype(str) # Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore') # Ensure all values are numeric sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce') # Sort manufacturers by percentage of units and get top 10 top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10) # Sort manufacturers by total sales and get top 10 top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10) # Combine top manufacturers from both lists and get up to 20 unique manufacturers combined_top = pd.concat([top_units, top_sales]).index.unique()[:20] # Filter out manufacturers that are not present in both datasets combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index] # Create a DataFrame with combined data for these top manufacturers combined_data = pd.DataFrame({ 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]], 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]] }).fillna(0) # Sort by units, then by sales combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False) # Filter out manufacturers with 0 units non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0] # If we have less than 3 non-zero manufacturers, add some zero-value ones if len(non_zero_manufacturers) < 3: zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers)) manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers]) else: manufacturers_to_show = non_zero_manufacturers values = manufacturers_to_show['units'].tolist() amounts = manufacturers_to_show['sales'].tolist() manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index] st.write(f"### Results for top {len(manufacturers)} manufacturers:") for manufacturer, value, amount in zip(manufacturers, values, amounts): st.write(f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales") if manufacturers: # Only create the chart if we have data fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}') st.pyplot(fig) else: st.warning("No data available to create the radar chart.") # Customer sales 2021-2024 (if data exists) sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023', 'VENTA_2024'] if all(col in df.columns for col in sales_columns): years = ['2021', '2022', '2023', '2024'] customer_sales = customer_data[sales_columns].values[0] fig_sales = px.line(x=years, y=customer_sales, markers=True, title=f'Sales Over the Years for Customer {customer_code}') fig_sales.update_layout(xaxis_title="Year", yaxis_title="Sales") st.plotly_chart(fig_sales) else: st.warning("Sales data for 2021-2024 not available.") else: st.warning(f"No data found for customer {customer_code}. Please check the code.") # Customer Recommendations Page elif page == "Articles Recommendations": st.title("Articles Recommendations") st.markdown(""" Get tailored recommendations for your customers based on their basket. """) # Campo input para cliente partial_code = st.text_input("Enter part of Customer Code for Recommendations (or leave empty to see all)") if partial_code: filtered_customers = df[df['CLIENTE'].str.contains(partial_code)] else: filtered_customers = df customer_list = filtered_customers['CLIENTE'].unique() customer_code = st.selectbox("Select Customer Code for Recommendations", customer_list) # DEfinicion de la funcion recomienda def recomienda(new_basket): # Calcular la matriz TF-IDF tfidf = TfidfVectorizer() tfidf_matrix = tfidf.fit_transform(cestas['Cestas']) # Convertir la nueva cesta en formato TF-IDF new_basket_str = ' '.join(new_basket) new_basket_tfidf = tfidf.transform([new_basket_str]) # Comparar la nueva cesta con las anteriores similarities = cosine_similarity(new_basket_tfidf, tfidf_matrix) # Obtener los índices de las cestas más similares similar_indices = similarities.argsort()[0][-3:] # Las 3 más similares # Crear un diccionario para contar las recomendaciones recommendations_count = {} total_similarity = 0 # Recomendar productos de cestas similares for idx in similar_indices: sim_score = similarities[0][idx] total_similarity += sim_score products = cestas.iloc[idx]['Cestas'].split() for product in products: if product.strip() not in new_basket: # Evitar recomendar lo que ya está en la cesta if product.strip() in recommendations_count: recommendations_count[product.strip()] += sim_score else: recommendations_count[product.strip()] = sim_score # Calcular la probabilidad relativa de cada producto recomendado recommendations_with_prob = [] if total_similarity > 0: # Verificar que total_similarity no sea cero recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()] else: print("No se encontraron similitudes suficientes para calcular probabilidades.") recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Ordenar por puntuación # Crear un nuevo DataFrame para almacenar las recomendaciones con descripciones y probabilidades recommendations_df = pd.DataFrame(columns=['ARTICULO', 'DESCRIPCION', 'PROBABILIDAD']) # Agregar las recomendaciones al DataFrame usando pd.concat for product, prob in recommendations_with_prob: # Buscar la descripción en el DataFrame de productos description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION'] if not description.empty: # Crear un nuevo DataFrame temporal para la recomendación temp_df = pd.DataFrame({ 'ARTICULO': [product], 'DESCRIPCION': [description.values[0]], # Obtener el primer valor encontrado 'PROBABILIDAD': [prob] }) # Concatenar el DataFrame temporal al DataFrame de recomendaciones recommendations_df = pd.concat([recommendations_df, temp_df], ignore_index=True) return recommendations_df # Comprobar si el cliente está en el CSV de fieles is_fiel = customer_code in fieles_df['CLIENTE'].astype(str).values if customer_code: if is_fiel: st.write(f"### Customer {customer_code} is a loyal customer.") option = st.selectbox("Select Recommendation Type", ["Select an option", "By Purchase History", "By Current Basket"]) if option == "By Purchase History": st.warning("Option not available... aún") elif option == "By Current Basket": st.write("Enter the items in the basket:") # Input para los artículos y unidades items = st.text_input("Enter items (comma-separated):").split(',') quantities = st.text_input("Enter quantities (comma-separated):").split(',') # Crear una lista de artículos basada en la entrada new_basket = [item.strip() for item in items] # Asegurarse de que las longitudes de artículos y cantidades coincidan if len(new_basket) == len(quantities): # Procesar la lista para recomendar recommendations_df = recomienda(new_basket) if not recommendations_df.empty: st.write("### Recommendations based on the current basket:") st.dataframe(recommendations_df) else: st.warning("No recommendations found for the provided basket.") else: st.warning("The number of items must match the number of quantities.") else: st.write(f"### Customer {customer_code} is not a loyal customer.") st.write("Recommendation based on the basket. Please enter the items:") # Input para los artículos y unidades items = st.text_input("Enter items (comma-separated):").split(',') quantities = st.text_input("Enter quantities (comma-separated):").split(',') # Crear una lista de artículos basada en la entrada new_basket = [item.strip() for item in items] # Asegurarse de que las longitudes de artículos y cantidades coincidan if len(new_basket) == len(quantities): # Procesar la lista para recomendar recommendations_df = recomienda(new_basket) if not recommendations_df.empty: st.write("### Recommendations based on the current basket:") st.dataframe(recommendations_df) else: st.warning("No recommendations found for the provided basket.") else: st.warning("The number of items must match the number of quantities.")