import os import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.metrics.pairwise import cosine_similarity from joblib import dump, load from sklearn.preprocessing import normalize import re def get_next_version(file_prefix, folder='RecommendationFiles/'): """Find the latest version of a file and return the next version's filename.""" if not os.path.exists(folder): os.makedirs(folder) # Ensure the folder exists # Regular expression to match files like 'file_0001.joblib' pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib") files = [f for f in os.listdir(folder) if pattern.match(f)] # Extract version numbers from matching files versions = [int(pattern.match(f).group(1)) for f in files] # Determine the next version number next_version = max(versions) + 1 if versions else 1 # Return the next version filename with the folder path return os.path.join(folder, f"{file_prefix}_{next_version:04d}.joblib") def get_latest_version(file_prefix, folder='RecommendationFiles/'): """Find the latest version of a file to load.""" if not os.path.exists(folder): raise FileNotFoundError(f"Folder '{folder}' does not exist") # Regular expression to match files like 'file_0001.joblib' pattern = re.compile(rf"{file_prefix}_(\d+)\.joblib") files = [f for f in os.listdir(folder) if pattern.match(f)] # Extract version numbers from matching files versions = [int(pattern.match(f).group(1)) for f in files] if versions: latest_version = max(versions) return os.path.join(folder, f"{file_prefix}_{latest_version:04d}.joblib") else: raise FileNotFoundError(f"No versions found for {file_prefix} in folder '{folder}'") def recomienda_tf(new_basket, cestas, productos): # Get the latest versions of the matrix and vectorizer from the folder tf_matrix_file = get_latest_version('count_matrix') count_vectorizer_file = get_latest_version('count_vectorizer') # Load the matrix TF and the vectorizer tf_matrix = load(tf_matrix_file) count = load(count_vectorizer_file) # Convert the new basket into TF (Term Frequency) format new_basket_str = ' '.join(new_basket) new_basket_vector = count.transform([new_basket_str]) new_basket_tf = normalize(new_basket_vector, norm='l1') # Normalize the count matrix for the current basket # Compare the new basket with previous ones similarities = cosine_similarity(new_basket_tf, tf_matrix) # Get the indices of the most similar baskets similar_indices = similarities.argsort()[0][-4:] # Top 4 most similar baskets # Create a dictionary to count recommendations recommendations_count = {} total_similarity = 0 # Recommend products from similar baskets for idx in similar_indices: sim_score = similarities[0][idx] total_similarity += sim_score # Sum of similarities products = cestas.iloc[idx]['Cestas'].split() unique_products = set(products) # Use a set to get unique products for product in unique_products: if product.strip() not in new_basket: # Avoid recommending items already in the basket recommendations_count[product.strip()] = recommendations_count.get(product.strip(), 0) + sim_score # Calculate the relative probability of each recommended product recommendations_with_prob = [] if total_similarity > 0: recommendations_with_prob = [(product, score / total_similarity) for product, score in recommendations_count.items()] else: print("No se encontraron similitudes suficientes para calcular probabilidades.") # Sort recommendations by relevance score recommendations_with_prob.sort(key=lambda x: x[1], reverse=True) # Create a new DataFrame to store recommendations recommendations_data = [] for product, score in recommendations_with_prob: # Search for the product description in the products DataFrame description = productos.loc[productos['ARTICULO'] == product, 'DESCRIPCION'] if not description.empty: recommendations_data.append({ 'ARTICULO': product, 'DESCRIPCION': description.values[0], 'RELEVANCIA': score }) recommendations_df = pd.DataFrame(recommendations_data) return recommendations_df.head(5) def retroalimentacion(cestas, cesta_nueva): # Convert basket from list to string cesta_unida = ' '.join(cesta_nueva) # Add the new basket to the historical baskets if it doesn't already exist if not cestas['Cestas'].isin([cesta_unida]).any(): cestas.loc[len(cestas)] = cesta_unida print("Cesta aƱadida.") # Re-save the updated baskets DataFrame cestas.to_csv('RecommendationFiles/cestas_final.csv', index=False) else: print("La cesta ya existe en el DataFrame.") # Re-vectorize the basket DataFrame count_vectorizer = CountVectorizer() count_vectorizer.fit(cestas['Cestas']) count_matrix = count_vectorizer.transform(cestas['Cestas']) tf_matrix = normalize(count_matrix, norm='l1') # Save new versions of the vectorizer and matrix count_vectorizer_file = get_next_version('count_vectorizer') tf_matrix_file = get_next_version('tf_matrix') dump(count_vectorizer, count_vectorizer_file) dump(tf_matrix, tf_matrix_file) return None