GPTMonster's picture
Upload 12 files
88e6640
raw
history blame
44 kB
import io
# import asyncio
import os
import ssl
from contextlib import closing
from typing import Optional, Tuple
import datetime
import promptlayer
promptlayer.api_key = os.environ.get("PROMPTLAYER_KEY")
import boto3
import gradio as gr
import requests
# UNCOMMENT TO USE WHISPER
import warnings
import whisper
from langchain import ConversationChain, LLMChain
from langchain.agents import load_tools, initialize_agent
from langchain.chains.conversation.memory import ConversationBufferMemory
# from langchain.llms import OpenAI
from promptlayer.langchain.llms import OpenAI
from threading import Lock
# Console to variable
from io import StringIO
import sys
import re
from openai.error import AuthenticationError, InvalidRequestError, RateLimitError
# Pertains to Express-inator functionality
from langchain.prompts import PromptTemplate
from polly_utils import PollyVoiceData, NEURAL_ENGINE
from azure_utils import AzureVoiceData
# Pertains to question answering functionality
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.docstore.document import Document
from langchain.chains.question_answering import load_qa_chain
# os.environ["NEWS_API_KEY"] = ""
# os.environ["TMDB_BEARER_TOKEN"] = ""
news_api_key = os.environ["NEWS_API_KEY"]
# news_api_key = "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"
# tmdb_bearer_token = os.environ["TMDB_BEARER_TOKEN"]
tmdb_bearer_token = "ef6345567bb53731af1fd359c5ed5ec9"
TOOLS_LIST = ['serpapi', 'wolfram-alpha', 'pal-math', 'pal-colored-objects', 'news-api'] #'google-search','news-api','tmdb-api','open-meteo-api'
TOOLS_DEFAULT_LIST = ['serpapi', 'wolfram-alpha', 'pal-math', 'pal-colored-objects', 'news-api']
BUG_FOUND_MSG = "Error in the return response. Please try again."
# AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. It is not necessary to hit a button or key after pasting it."
AUTH_ERR_MSG = "Please paste your OpenAI key from openai.com to use this application. "
MAX_TOKENS = 2048
LOOPING_TALKING_HEAD = "videos/Masahiro.mp4"
TALKING_HEAD_WIDTH = "192"
MAX_TALKING_HEAD_TEXT_LENGTH = 155
# Pertains to Express-inator functionality
NUM_WORDS_DEFAULT = 0
MAX_WORDS = 400
FORMALITY_DEFAULT = "N/A"
TEMPERATURE_DEFAULT = 0.5
EMOTION_DEFAULT = "N/A"
LANG_LEVEL_DEFAULT = "N/A"
TRANSLATE_TO_DEFAULT = "N/A"
LITERARY_STYLE_DEFAULT = "N/A"
PROMPT_TEMPLATE = PromptTemplate(
input_variables=["original_words", "num_words", "formality", "emotions", "lang_level", "translate_to",
"literary_style"],
template="Restate {num_words}{formality}{emotions}{lang_level}{translate_to}{literary_style}the following: \n{original_words}\n",
)
POLLY_VOICE_DATA = PollyVoiceData()
AZURE_VOICE_DATA = AzureVoiceData()
# Pertains to WHISPER functionality
WHISPER_DETECT_LANG = "Detect language"
# UNCOMMENT TO USE WHISPER
warnings.filterwarnings("ignore")
WHISPER_MODEL = whisper.load_model("tiny")
print("WHISPER_MODEL", WHISPER_MODEL)
# UNCOMMENT TO USE WHISPER
def transcribe(aud_inp, whisper_lang):
if aud_inp is None:
return ""
aud = whisper.load_audio(aud_inp)
aud = whisper.pad_or_trim(aud)
mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device)
_, probs = WHISPER_MODEL.detect_language(mel)
options = whisper.DecodingOptions()
if whisper_lang != WHISPER_DETECT_LANG:
whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code(whisper_lang)
options = whisper.DecodingOptions(language=whisper_lang_code)
result = whisper.decode(WHISPER_MODEL, mel, options)
print("result.text", result.text)
result_text = ""
if result and result.text:
result_text = result.text
return result_text
# Temporarily address Wolfram Alpha SSL certificate issue
ssl._create_default_https_context = ssl._create_unverified_context
# TEMPORARY FOR TESTING
def transcribe_dummy(aud_inp_tb, whisper_lang):
if aud_inp_tb is None:
return ""
# aud = whisper.load_audio(aud_inp)
# aud = whisper.pad_or_trim(aud)
# mel = whisper.log_mel_spectrogram(aud).to(WHISPER_MODEL.device)
# _, probs = WHISPER_MODEL.detect_language(mel)
# options = whisper.DecodingOptions()
# options = whisper.DecodingOptions(language="ja")
# result = whisper.decode(WHISPER_MODEL, mel, options)
result_text = "Whisper will detect language"
if whisper_lang != WHISPER_DETECT_LANG:
whisper_lang_code = POLLY_VOICE_DATA.get_whisper_lang_code(whisper_lang)
result_text = f"Whisper will use lang code: {whisper_lang_code}"
print("result_text", result_text)
return aud_inp_tb
# Pertains to Express-inator functionality
def transform_text(desc, express_chain, num_words, formality,
anticipation_level, joy_level, trust_level,
fear_level, surprise_level, sadness_level, disgust_level, anger_level,
lang_level, translate_to, literary_style):
num_words_prompt = ""
if num_words and int(num_words) != 0:
num_words_prompt = "using up to " + str(num_words) + " words, "
# Change some arguments to lower case
formality = formality.lower()
anticipation_level = anticipation_level.lower()
joy_level = joy_level.lower()
trust_level = trust_level.lower()
fear_level = fear_level.lower()
surprise_level = surprise_level.lower()
sadness_level = sadness_level.lower()
disgust_level = disgust_level.lower()
anger_level = anger_level.lower()
formality_str = ""
if formality != "n/a":
formality_str = "in a " + formality + " manner, "
# put all emotions into a list
emotions = []
if anticipation_level != "n/a":
emotions.append(anticipation_level)
if joy_level != "n/a":
emotions.append(joy_level)
if trust_level != "n/a":
emotions.append(trust_level)
if fear_level != "n/a":
emotions.append(fear_level)
if surprise_level != "n/a":
emotions.append(surprise_level)
if sadness_level != "n/a":
emotions.append(sadness_level)
if disgust_level != "n/a":
emotions.append(disgust_level)
if anger_level != "n/a":
emotions.append(anger_level)
emotions_str = ""
if len(emotions) > 0:
if len(emotions) == 1:
emotions_str = "with emotion of " + emotions[0] + ", "
else:
emotions_str = "with emotions of " + ", ".join(emotions[:-1]) + " and " + emotions[-1] + ", "
lang_level_str = ""
if lang_level != LANG_LEVEL_DEFAULT:
lang_level_str = "at a " + lang_level + " level, " if translate_to == TRANSLATE_TO_DEFAULT else ""
translate_to_str = ""
if translate_to != TRANSLATE_TO_DEFAULT:
translate_to_str = "translated to " + (
"" if lang_level == TRANSLATE_TO_DEFAULT else lang_level + " level ") + translate_to + ", "
literary_style_str = ""
if literary_style != LITERARY_STYLE_DEFAULT:
if literary_style == "Prose":
literary_style_str = "as prose, "
if literary_style == "Story":
literary_style_str = "as a story, "
elif literary_style == "Summary":
literary_style_str = "as a summary, "
elif literary_style == "Outline":
literary_style_str = "as an outline numbers and lower case letters, "
elif literary_style == "Bullets":
literary_style_str = "as bullet points using bullets, "
elif literary_style == "Poetry":
literary_style_str = "as a poem, "
elif literary_style == "Haiku":
literary_style_str = "as a haiku, "
elif literary_style == "Limerick":
literary_style_str = "as a limerick, "
elif literary_style == "Rap":
literary_style_str = "as a rap, "
elif literary_style == "Joke":
literary_style_str = "as a very funny joke with a setup and punchline, "
elif literary_style == "Knock-knock":
literary_style_str = "as a very funny knock-knock joke, "
elif literary_style == "FAQ":
literary_style_str = "as a FAQ with several questions and answers, "
formatted_prompt = PROMPT_TEMPLATE.format(
original_words=desc,
num_words=num_words_prompt,
formality=formality_str,
emotions=emotions_str,
lang_level=lang_level_str,
translate_to=translate_to_str,
literary_style=literary_style_str
)
trans_instr = num_words_prompt + formality_str + emotions_str + lang_level_str + translate_to_str + literary_style_str
if express_chain and len(trans_instr.strip()) > 0:
generated_text = express_chain.run(
{'original_words': desc, 'num_words': num_words_prompt, 'formality': formality_str,
'emotions': emotions_str, 'lang_level': lang_level_str, 'translate_to': translate_to_str,
'literary_style': literary_style_str}).strip()
else:
print("Not transforming text")
generated_text = desc
# replace all newlines with <br> in generated_text
generated_text = generated_text.replace("\n", "\n\n")
prompt_plus_generated = "GPT prompt: " + formatted_prompt + "\n\n" + generated_text
print("\n==== date/time: " + str(datetime.datetime.now() - datetime.timedelta(hours=5)) + " ====")
print("prompt_plus_generated: " + prompt_plus_generated)
return generated_text
def load_chain(tools_list, llm):
chain = None
express_chain = None
memory = None
if llm:
print("\ntools_list", tools_list)
tool_names = tools_list
tools = load_tools(tool_names, llm=llm, news_api_key=news_api_key, tmdb_bearer_token=tmdb_bearer_token)
memory = ConversationBufferMemory(memory_key="chat_history")
chain = initialize_agent(tools, llm, agent="conversational-react-description", verbose=True, memory=memory)
express_chain = LLMChain(llm=llm, prompt=PROMPT_TEMPLATE, verbose=True)
return chain, express_chain, memory
# async def set_chain_state_api_key(api_key):
# def set_openai_key(api_key):
# Set the API key for chain_state
# chain_state.api_key = api_key
# async def set_express_chain_state_api_key(api_key):
# # Set the API key for express_chain_state
# express_chain_state.api_key = api_key
# async def set_llm_state_api_key(api_key):
# Set the API key for llm_state
# llm_state.api_key = api_key
# async def set_embeddings_state_api_key(api_key):
# Set the API key for embeddings_state
# embeddings_state.api_key = api_key
# async def set_qa_chain_state_api_key(api_key):
# Set the API key for qa_chain_state
# qa_chain_state.api_key = api_key
# async def set_memory_state_api_key(api_key):
# Set the API key for memory_state
# memory_state.api_key = api_key
def set_openai_api_key(api_key):
if api_key and api_key.startswith("sk-") and len(api_key) > 50:
os.environ["OPENAI_API_KEY"] = api_key
print("\n\n ++++++++++++++ Setting OpenAI API key ++++++++++++++ \n\n")
print(str(datetime.datetime.now()) + ": Before OpenAI, OPENAI_API_KEY length: " + str(
len(os.environ["OPENAI_API_KEY"])))
llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS)
print(str(datetime.datetime.now()) + ": After OpenAI, OPENAI_API_KEY length: " + str(
len(os.environ["OPENAI_API_KEY"])))
chain, express_chain, memory = load_chain(TOOLS_DEFAULT_LIST, llm)
# Pertains to question answering functionality
embeddings = OpenAIEmbeddings()
qa_chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")
print(str(datetime.datetime.now()) + ": After load_chain, OPENAI_API_KEY length: " + str(
len(os.environ["OPENAI_API_KEY"])))
os.environ["OPENAI_API_KEY"] = ""
return chain, express_chain, llm, embeddings, qa_chain, memory
return None, None, None, None, None, None
PROMPTLAYER_API_BASE = "https://api.promptlayer.com"
def run_chain(chain, inp, capture_hidden_text):
output = ""
hidden_text = None
if capture_hidden_text:
error_msg = None
tmp = sys.stdout
hidden_text_io = StringIO()
sys.stdout = hidden_text_io
try:
output = chain.run(input=inp)
except AuthenticationError as ae:
error_msg = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae)
print("error_msg", error_msg)
except RateLimitError as rle:
error_msg = "\n\nRateLimitError: " + str(rle)
except ValueError as ve:
error_msg = "\n\nValueError: " + str(ve)
except InvalidRequestError as ire:
error_msg = "\n\nInvalidRequestError: " + str(ire)
except Exception as e:
error_msg = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e)
sys.stdout = tmp
hidden_text = hidden_text_io.getvalue()
# remove escape characters from hidden_text
hidden_text = re.sub(r'\x1b[^m]*m', '', hidden_text)
# remove "Entering new AgentExecutor chain..." from hidden_text
hidden_text = re.sub(r"Entering new AgentExecutor chain...\n", "", hidden_text)
# remove "Finished chain." from hidden_text
hidden_text = re.sub(r"Finished chain.", "", hidden_text)
# Add newline after "Thought:" "Action:" "Observation:" "Input:" and "AI:"
hidden_text = re.sub(r"Thought:", "\n\nThought:", hidden_text)
hidden_text = re.sub(r"Action:", "\n\nAction:", hidden_text)
hidden_text = re.sub(r"Observation:", "\n\nObservation:", hidden_text)
hidden_text = re.sub(r"Input:", "\n\nInput:", hidden_text)
hidden_text = re.sub(r"AI:", "\n\nAI:", hidden_text)
if error_msg:
hidden_text += error_msg
print("hidden_text: ", hidden_text)
else:
try:
output = chain.run(input=inp)
except AuthenticationError as ae:
output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae)
print("output", output)
except RateLimitError as rle:
output = "\n\nRateLimitError: " + str(rle)
except ValueError as ve:
output = "\n\nValueError: " + str(ve)
except InvalidRequestError as ire:
output = "\n\nInvalidRequestError: " + str(ire)
except Exception as e:
output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e)
return output, hidden_text
def reset_memory(history, memory):
memory.clear()
history = []
return history, history, memory
class ChatWrapper:
def __init__(self):
self.lock = Lock()
def __call__(
self, api_key: str, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain],
trace_chain: bool, speak_text: bool, talking_head: bool, monologue: bool, express_chain: Optional[LLMChain],
num_words, formality, anticipation_level, joy_level, trust_level,
fear_level, surprise_level, sadness_level, disgust_level, anger_level,
lang_level, translate_to, literary_style, qa_chain, docsearch, use_embeddings
):
"""Execute the chat functionality."""
self.lock.acquire()
try:
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
print("inp: " + inp)
print("trace_chain: ", trace_chain)
print("speak_text: ", speak_text)
print("talking_head: ", talking_head)
print("monologue: ", monologue)
history = history or []
# If chain is None, that is because no API key was provided.
output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now())
hidden_text = output
if chain:
# Set OpenAI key
import openai
openai.api_key = api_key
if not monologue:
if use_embeddings:
if inp and inp.strip() != "":
if docsearch:
docs = docsearch.similarity_search(inp)
output = str(qa_chain.run(input_documents=docs, question=inp))
else:
output, hidden_text = "Please supply some text in the the Embeddings tab.", None
else:
output, hidden_text = "What's on your mind?", None
else:
output, hidden_text = run_chain(chain, inp, capture_hidden_text=trace_chain)
else:
output, hidden_text = inp, None
output = transform_text(output, express_chain, num_words, formality, anticipation_level, joy_level,
trust_level,
fear_level, surprise_level, sadness_level, disgust_level, anger_level,
lang_level, translate_to, literary_style)
text_to_display = output
if trace_chain:
text_to_display = hidden_text + "\n\n" + output
history.append((inp, text_to_display))
html_video, temp_file, html_audio, temp_aud_file = None, None, None, None
if speak_text:
if talking_head:
if len(output) <= MAX_TALKING_HEAD_TEXT_LENGTH:
html_video, temp_file = do_html_video_speak(output, translate_to)
else:
temp_file = LOOPING_TALKING_HEAD
html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH)
html_audio, temp_aud_file = do_html_audio_speak(output, translate_to)
else:
html_audio, temp_aud_file = do_html_audio_speak(output, translate_to)
else:
if talking_head:
temp_file = LOOPING_TALKING_HEAD
html_video = create_html_video(temp_file, TALKING_HEAD_WIDTH)
else:
# html_audio, temp_aud_file = do_html_audio_speak(output, translate_to)
# html_video = create_html_video(temp_file, "128")
pass
except Exception as e:
raise e
finally:
self.lock.release()
return history, history, html_video, temp_file, html_audio, temp_aud_file, ""
# return history, history, html_audio, temp_aud_file, ""
chat = ChatWrapper()
def do_html_audio_speak(words_to_speak, polly_language):
polly_client = boto3.Session(
aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"],
region_name=os.environ["AWS_DEFAULT_REGION"]
).client('polly')
# voice_id, language_code, engine = POLLY_VOICE_DATA.get_voice(polly_language, "Female")
voice_id, language_code, engine = POLLY_VOICE_DATA.get_voice(polly_language, "Male")
if not voice_id:
# voice_id = "Joanna"
voice_id = "Matthew"
language_code = "en-US"
engine = NEURAL_ENGINE
response = polly_client.synthesize_speech(
Text=words_to_speak,
OutputFormat='mp3',
VoiceId=voice_id,
LanguageCode=language_code,
Engine=engine
)
html_audio = '<pre>no audio</pre>'
# Save the audio stream returned by Amazon Polly on Lambda's temp directory
if "AudioStream" in response:
with closing(response["AudioStream"]) as stream:
# output = os.path.join("/tmp/", "speech.mp3")
try:
with open('audios/tempfile.mp3', 'wb') as f:
f.write(stream.read())
temp_aud_file = gr.File("audios/tempfile.mp3")
temp_aud_file_url = "/file=" + temp_aud_file.value['name']
html_audio = f'<audio autoplay><source src={temp_aud_file_url} type="audio/mp3"></audio>'
except IOError as error:
# Could not write to file, exit gracefully
print(error)
return None, None
else:
# The response didn't contain audio data, exit gracefully
print("Could not stream audio")
return None, None
return html_audio, "audios/tempfile.mp3"
# def create_html_video(file_name, width):
# temp_file_url = "/file=" + tmp_file.value['name']
# html_video = f'<video width={width} height={width} autoplay muted loop><source src={temp_file_url} type="video/mp4" poster="Masahiro.png"></video>'
# return html_video
def do_html_video_speak(words_to_speak, azure_language):
azure_voice = AZURE_VOICE_DATA.get_voice(azure_language, "Male")
if not azure_voice:
azure_voice = "en-US-ChristopherNeural"
headers = {"Authorization": f"Bearer {os.environ['EXHUMAN_API_KEY']}"}
body = {
'bot_name': 'Masahiro',
'bot_response': words_to_speak,
'azure_voice': azure_voice,
'azure_style': 'friendly',
'animation_pipeline': 'high_speed',
}
api_endpoint = "https://api.exh.ai/animations/v1/generate_lipsync"
res = requests.post(api_endpoint, json=body, headers=headers)
print("res.status_code: ", res.status_code)
html_video = '<pre>no video</pre>'
if isinstance(res.content, bytes):
response_stream = io.BytesIO(res.content)
print("len(res.content)): ", len(res.content))
with open('videos/tempfile.mp4', 'wb') as f:
f.write(response_stream.read())
temp_file = gr.File("videos/tempfile.mp4")
temp_file_url = "/file=" + temp_file.value['name']
html_video = f'<video width={TALKING_HEAD_WIDTH} height={TALKING_HEAD_WIDTH} autoplay><source src={temp_file_url} type="video/mp4" poster="Masahiro.png"></video>'
else:
print('video url unknown')
return html_video, "videos/tempfile.mp4"
def update_selected_tools(widget, state, llm):
if widget:
state = widget
chain, express_chain, memory = load_chain(state, llm)
return state, llm, chain, express_chain
# def update_talking_head(widget, state):
# if widget:
# state = widget
# video_html_talking_head = create_html_video(LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH)
# return state, video_html_talking_head
# else:
# # return state, create_html_video(LOOPING_TALKING_HEAD, "32")
# return None, "<pre></pre>"
def update_foo(widget, state):
if widget:
state = widget
return state
# Pertains to question answering functionality
def update_embeddings(embeddings_text, embeddings, qa_chain):
if embeddings_text:
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(embeddings_text)
docsearch = FAISS.from_texts(texts, embeddings)
print("Embeddings updated")
return docsearch
# Pertains to question answering functionality
def update_use_embeddings(widget, state):
if widget:
state = widget
return state
with gr.Blocks(css=".gradio-container {background-color: lightgray}") as block:
llm_state = gr.State()
history_state = gr.State()
chain_state = gr.State()
express_chain_state = gr.State()
tools_list_state = gr.State(TOOLS_DEFAULT_LIST)
trace_chain_state = gr.State(False)
speak_text_state = gr.State(False)
talking_head_state = gr.State(True)
monologue_state = gr.State(False) # Takes the input and repeats it back to the user, optionally transforming it.
memory_state = gr.State()
# Pertains to Express-inator functionality
num_words_state = gr.State(NUM_WORDS_DEFAULT)
formality_state = gr.State(FORMALITY_DEFAULT)
anticipation_level_state = gr.State(EMOTION_DEFAULT)
joy_level_state = gr.State(EMOTION_DEFAULT)
trust_level_state = gr.State(EMOTION_DEFAULT)
fear_level_state = gr.State(EMOTION_DEFAULT)
surprise_level_state = gr.State(EMOTION_DEFAULT)
sadness_level_state = gr.State(EMOTION_DEFAULT)
disgust_level_state = gr.State(EMOTION_DEFAULT)
anger_level_state = gr.State(EMOTION_DEFAULT)
lang_level_state = gr.State(LANG_LEVEL_DEFAULT)
translate_to_state = gr.State(TRANSLATE_TO_DEFAULT)
literary_style_state = gr.State(LITERARY_STYLE_DEFAULT)
# Pertains to WHISPER functionality
whisper_lang_state = gr.State(WHISPER_DETECT_LANG)
# Pertains to question answering functionality
embeddings_state = gr.State()
qa_chain_state = gr.State()
docsearch_state = gr.State()
use_embeddings_state = gr.State(False)
with gr.Tab("Chat"):
with gr.Row():
with gr.Column():
gr.HTML(
"""<b><center>KB Prototype </center></b>
<p><center><b>GPT-Monster Gym
</b></center></p>""")
openai_api_key_textbox = gr.Textbox(placeholder="sk-... μ‹œμž‘ν•˜λŠ” OpenAI API key λΆ™μ—¬λ„£κΈ°",
show_label=False, lines=1, type='password', elem_id="openai_api_key_textbox")
with gr.Row():
with gr.Column(scale=1, min_width=TALKING_HEAD_WIDTH, visible=True):
speak_text_cb = gr.Checkbox(label="μŒμ„±κΈ°λŠ₯", value=False)
speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state],
outputs=[speak_text_state])
# my_file = gr.File(label="Upload a file", type="file", visible=False)
# tmp_file = gr.File(LOOPING_TALKING_HEAD, visible=False)
# # tmp_file_url = "/file=" + tmp_file.value['name']
# htm_video = create_html_video(LOOPING_TALKING_HEAD, TALKING_HEAD_WIDTH)
# video_html = gr.HTML(htm_video)
# my_aud_file = gr.File(label="Audio file", type="file", visible=True)
tmp_aud_file = gr.File("audios/tempfile.mp3", visible=False)
tmp_aud_file_url = "/file=" + tmp_aud_file.value['name']
htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>'
audio_html = gr.HTML(htm_audio)
with gr.Column(scale=7):
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(label="였늘 점심은 μ–΄λ–»κ²Œ ν• κΉŒμš”?",
placeholder="μ§€κΈˆ λ– μ˜€λŠ” 생각을 ν•œλ²ˆ 말해 λ³΄μ„Έμš”",
lines=1)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
# UNCOMMENT TO USE WHISPER
with gr.Row():
audio_comp = gr.Microphone(source="microphone", type="filepath", label="κ·Έλƒ₯ 말해봐!",
interactive=True, streaming=False)
audio_comp.change(transcribe, inputs=[audio_comp, whisper_lang_state], outputs=[message])
# TEMPORARY FOR TESTING
# with gr.Row():
# audio_comp_tb = gr.Textbox(label="Just say it!", lines=1)
# audio_comp_tb.submit(transcribe_dummy, inputs=[audio_comp_tb, whisper_lang_state], outputs=[message])
gr.Examples(
examples=["μž…λ ₯된 λ‚΄μš©μ„ μ˜μ–΄λ‘œ μžμ—°μŠ€λŸ½κ²Œ ν‘œν˜„μœΌλ‘œ 말해 μ£Όμ„Έμš”",
"μž…λ ₯ν•  μ•½κ΄€ λ‚΄μš©μ„ μœ λ¨ΈλŸ¬μŠ€ν•˜κ²Œ ν‘œν˜„ν•΄ μ£Όμ„Έμš”",
"SQL쿼리λ₯Ό νŠœλ‹ν•΄ μ£Όμ„Έμš”νŒŒμ΄μ¬μ½”λ“œλ₯Ό μˆ˜μ •ν•΄ μ£Όμ„Έμš”",
"파이썬으둜 μ›ΉμŠ€ν¬λž˜ν•‘ μ½”λ“œλ₯Ό μž‘μ„±ν•΄ μ£Όμ„Έμš”" ,
"이 μ½”λ“œμ—μ„œ 였λ₯˜λ₯Ό μˆ˜μ •ν•΄ μ£Όμ„Έμš”",
"μœ„ λ‚΄μš©μ„ 정리해 μ£Όμ„Έμš”",
"μœ„ λ‚΄μš©μ˜ μ˜ˆμƒ μ§ˆλ¬Έμ„ λ§Œλ“€μ–΄ μ£Όμ„Έμš”"],
inputs=message
)
with gr.Tab("Settings"):
tools_cb_group = gr.CheckboxGroup(label="Tools:", choices=TOOLS_LIST,
value=TOOLS_DEFAULT_LIST)
tools_cb_group.change(update_selected_tools,
inputs=[tools_cb_group, tools_list_state, llm_state],
outputs=[tools_list_state, llm_state, chain_state, express_chain_state])
trace_chain_cb = gr.Checkbox(label="Show reasoning chain in chat bubble", value=False)
trace_chain_cb.change(update_foo, inputs=[trace_chain_cb, trace_chain_state],
outputs=[trace_chain_state])
# speak_text_cb = gr.Checkbox(label="Speak text from agent", value=False)
# speak_text_cb.change(update_foo, inputs=[speak_text_cb, speak_text_state],
# outputs=[speak_text_state])
talking_head_cb = gr.Checkbox(label="Show talking head", value=True)
# talking_head_cb.change(update_talking_head, inputs=[talking_head_cb, talking_head_state],
# outputs=[talking_head_state, video_html])
monologue_cb = gr.Checkbox(label="Babel fish mode (translate/restate what you enter, no conversational agent)",
value=False)
monologue_cb.change(update_foo, inputs=[monologue_cb, monologue_state],
outputs=[monologue_state])
reset_btn = gr.Button(value="Reset chat", variant="secondary").style(full_width=False)
reset_btn.click(reset_memory, inputs=[history_state, memory_state], outputs=[chatbot, history_state, memory_state])
with gr.Tab("Whisper STT"):
whisper_lang_radio = gr.Radio(label="Whisper speech-to-text language:", choices=[
WHISPER_DETECT_LANG, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)",
"Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)",
"English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)",
"German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese",
"Korean", "Norwegian", "Polish",
"Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)",
"Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Vietnamese", "Welsh"],
value=WHISPER_DETECT_LANG)
whisper_lang_radio.change(update_foo,
inputs=[whisper_lang_radio, whisper_lang_state],
outputs=[whisper_lang_state])
with gr.Tab("Translate to"):
lang_level_radio = gr.Radio(label="Language level:", choices=[
LANG_LEVEL_DEFAULT, "1st grade", "2nd grade", "3rd grade", "4th grade", "5th grade", "6th grade",
"7th grade", "8th grade", "9th grade", "10th grade", "11th grade", "12th grade", "University"],
value=LANG_LEVEL_DEFAULT)
lang_level_radio.change(update_foo, inputs=[lang_level_radio, lang_level_state],
outputs=[lang_level_state])
translate_to_radio = gr.Radio(label="Language:", choices=[
TRANSLATE_TO_DEFAULT, "Arabic", "Arabic (Gulf)", "Catalan", "Chinese (Cantonese)", "Chinese (Mandarin)",
"Danish", "Dutch", "English (Australian)", "English (British)", "English (Indian)", "English (New Zealand)",
"English (South African)", "English (US)", "English (Welsh)", "Finnish", "French", "French (Canadian)",
"German", "German (Austrian)", "Georgian", "Hindi", "Icelandic", "Indonesian", "Italian", "Japanese",
"Korean", "Norwegian", "Polish",
"Portuguese (Brazilian)", "Portuguese (European)", "Romanian", "Russian", "Spanish (European)",
"Spanish (Mexican)", "Spanish (US)", "Swedish", "Turkish", "Ukrainian", "Vietnamese", "Welsh",
"emojis", "Gen Z slang", "how the stereotypical Karen would say it", "Klingon", "Neanderthal",
"Pirate", "Strange Planet expospeak technical talk", "Yoda"],
value=TRANSLATE_TO_DEFAULT)
translate_to_radio.change(update_foo,
inputs=[translate_to_radio, translate_to_state],
outputs=[translate_to_state])
with gr.Tab("Formality"):
formality_radio = gr.Radio(label="Formality:",
choices=[FORMALITY_DEFAULT, "Casual", "Polite", "Honorific"],
value=FORMALITY_DEFAULT)
formality_radio.change(update_foo,
inputs=[formality_radio, formality_state],
outputs=[formality_state])
with gr.Tab("Lit style"):
literary_style_radio = gr.Radio(label="Literary style:", choices=[
LITERARY_STYLE_DEFAULT, "Prose", "Story", "Summary", "Outline", "Bullets", "Poetry", "Haiku", "Limerick", "Rap",
"Joke", "Knock-knock", "FAQ"],
value=LITERARY_STYLE_DEFAULT)
literary_style_radio.change(update_foo,
inputs=[literary_style_radio, literary_style_state],
outputs=[literary_style_state])
with gr.Tab("Emotions"):
anticipation_level_radio = gr.Radio(label="Anticipation level:",
choices=[EMOTION_DEFAULT, "Interest", "Anticipation", "Vigilance"],
value=EMOTION_DEFAULT)
anticipation_level_radio.change(update_foo,
inputs=[anticipation_level_radio, anticipation_level_state],
outputs=[anticipation_level_state])
joy_level_radio = gr.Radio(label="Joy level:",
choices=[EMOTION_DEFAULT, "Serenity", "Joy", "Ecstasy"],
value=EMOTION_DEFAULT)
joy_level_radio.change(update_foo,
inputs=[joy_level_radio, joy_level_state],
outputs=[joy_level_state])
trust_level_radio = gr.Radio(label="Trust level:",
choices=[EMOTION_DEFAULT, "Acceptance", "Trust", "Admiration"],
value=EMOTION_DEFAULT)
trust_level_radio.change(update_foo,
inputs=[trust_level_radio, trust_level_state],
outputs=[trust_level_state])
fear_level_radio = gr.Radio(label="Fear level:",
choices=[EMOTION_DEFAULT, "Apprehension", "Fear", "Terror"],
value=EMOTION_DEFAULT)
fear_level_radio.change(update_foo,
inputs=[fear_level_radio, fear_level_state],
outputs=[fear_level_state])
surprise_level_radio = gr.Radio(label="Surprise level:",
choices=[EMOTION_DEFAULT, "Distraction", "Surprise", "Amazement"],
value=EMOTION_DEFAULT)
surprise_level_radio.change(update_foo,
inputs=[surprise_level_radio, surprise_level_state],
outputs=[surprise_level_state])
sadness_level_radio = gr.Radio(label="Sadness level:",
choices=[EMOTION_DEFAULT, "Pensiveness", "Sadness", "Grief"],
value=EMOTION_DEFAULT)
sadness_level_radio.change(update_foo,
inputs=[sadness_level_radio, sadness_level_state],
outputs=[sadness_level_state])
disgust_level_radio = gr.Radio(label="Disgust level:",
choices=[EMOTION_DEFAULT, "Boredom", "Disgust", "Loathing"],
value=EMOTION_DEFAULT)
disgust_level_radio.change(update_foo,
inputs=[disgust_level_radio, disgust_level_state],
outputs=[disgust_level_state])
anger_level_radio = gr.Radio(label="Anger level:",
choices=[EMOTION_DEFAULT, "Annoyance", "Anger", "Rage"],
value=EMOTION_DEFAULT)
anger_level_radio.change(update_foo,
inputs=[anger_level_radio, anger_level_state],
outputs=[anger_level_state])
with gr.Tab("Max words"):
num_words_slider = gr.Slider(label="Max number of words to generate (0 for don't care)",
value=NUM_WORDS_DEFAULT, minimum=0, maximum=MAX_WORDS, step=10)
num_words_slider.change(update_foo,
inputs=[num_words_slider, num_words_state],
outputs=[num_words_state])
with gr.Tab("Embeddings"):
embeddings_text_box = gr.Textbox(label="Enter text for embeddings and hit Create:",
lines=20)
with gr.Row():
use_embeddings_cb = gr.Checkbox(label="Use embeddings", value=False)
use_embeddings_cb.change(update_use_embeddings, inputs=[use_embeddings_cb, use_embeddings_state],
outputs=[use_embeddings_state])
embeddings_text_submit = gr.Button(value="Create", variant="secondary").style(full_width=False)
embeddings_text_submit.click(update_embeddings,
inputs=[embeddings_text_box, embeddings_state, qa_chain_state],
outputs=[docsearch_state])
gr.HTML("""
<p>OpenAI GPT-3.5와 LangChain을 μ‚¬μš©ν•˜μ—¬ μ±„νŒ…ν˜•μ‹μœΌλ‘œ λ³΄μ—¬μ€λ‹ˆλ‹€.</a>
μ½”λ“œ μž‘μ„±μ„ μš”μ²­, 였λ₯˜ μˆ˜μ •, SQLνŠœλ‹, λ²ˆμ—­(νŒŒνŒŒκ³ λŠ” 이젠 μ•ˆλ…•~)을 μ‹œμž‘μœΌλ‘œ
<b>KB금육 μ „λ¬Έκ°€λ‘œμ„œ νŒλ‹¨λ˜λŠ” Data Import와 Modellingλ₯Ό μ˜€ν”ˆμ†ŒμŠ€λ‘œ μ‹€ν—˜ν•΄ λ³΄μ„Έμš”.</b>
</p>""")
gr.HTML("""
<p>이 μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜μ€<a href='https://www.linkedin.com/in/javafxpert/'>James L. Weaver</a>
λ‹˜μ˜ μ˜€ν”ˆμ†ŒμŠ€λ₯Ό ν™œμš©ν•˜μ˜€μŠ΅λ‹ˆλ‹€. (μ›μž‘μž λͺ…μ‹œ)
</p>""")
# gr.HTML("""
# <form action="https://www.paypal.com/donate" method="post" target="_blank">
# <input type="hidden" name="business" value="AK8BVNALBXSPQ" />
# <input type="hidden" name="no_recurring" value="0" />
# <input type="hidden" name="item_name" value="Please consider helping to defray the cost of APIs such as SerpAPI and WolframAlpha that this app uses." />
# <input type="hidden" name="currency_code" value="USD" />
# <input type="image" src="https://www.paypalobjects.com/en_US/i/btn/btn_donate_LG.gif" border="0" name="submit" title="PayPal - The safer, easier way to pay online!" alt="Donate with PayPal button" />
# <img alt="" border="0" src="https://www.paypal.com/en_US/i/scr/pixel.gif" width="1" height="1" />
# </form># The OpenAI API key is stored in the browser's local storage and retrieved when the application is loaded.
# # This is done using the change() and load() methods of the openai_api_key_textbox object.
# # When the user inputs the OpenAI API key, it is saved to the local storage:
# openai_api_key_textbox.change(None,
# inputs=[openai_api_key_textbox],
# outputs=None, _js="(api_key) => localStorage.setItem('open_api_key', api_key)")
# # When the application is loaded, the OpenAI API key is retrieved from the local storage and set to the openai_api_key_textbox:
# block.load(None, inputs=None, outputs=openai_api_key_textbox, _js="()=> localStorage.getItem('open_api_key')")
# # The OpenAI API key is then used to set the API key for various components in the application:
# openai_api_key_textbox.change(set_openai_api_key,
# inputs=[openai_api_key_textbox],
# outputs=[chain_state, express_chain_state, llm_state, embeddings_state,
# qa_chain_state, memory_state])
# # The algorithmic timeline for using the OpenAI API key is as follows:
# # 1. The user inputs the OpenAI API key, which is saved to the local storage.
# # 2. The application retrieves the OpenAI API key from the local storage when it is loaded.
# # 3. The OpenAI API key is used to set the API key for various components in the application.
# # 4. The application can now use the OpenAI API key to make requests to the OpenAI API.
# """)
# gr.HTML("""<center>
# <a href="https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain?duplicate=true">
# <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
# Powered by <a href='https://github.com/hwchase17/langchain'>LangChain πŸ¦œοΈπŸ”—</a>
# </center>""")
message.submit(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state,
speak_text_state, talking_head_state, monologue_state,
express_chain_state, num_words_state, formality_state,
anticipation_level_state, joy_level_state, trust_level_state, fear_level_state,
surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state,
lang_level_state, translate_to_state, literary_style_state,
qa_chain_state, docsearch_state, use_embeddings_state],
outputs=[chatbot, history_state, audio_html, tmp_aud_file, message])
# outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message])
# outputs=[chatbot, history_state, audio_html, tmp_aud_file, message])
submit.click(chat, inputs=[openai_api_key_textbox, message, history_state, chain_state, trace_chain_state,
speak_text_state, talking_head_state, monologue_state,
express_chain_state, num_words_state, formality_state,
anticipation_level_state, joy_level_state, trust_level_state, fear_level_state,
surprise_level_state, sadness_level_state, disgust_level_state, anger_level_state,
lang_level_state, translate_to_state, literary_style_state,
qa_chain_state, docsearch_state, use_embeddings_state],
outputs=[chatbot, history_state, audio_html, tmp_aud_file, message])
# outputs=[chatbot, history_state, video_html, my_file, audio_html, tmp_aud_file, message])
# outputs=[chatbot, history_state, audio_html, tmp_aud_file, message])
openai_api_key_textbox.change(None,
inputs=[openai_api_key_textbox],
outputs=None, _js="(api_key) => localStorage.setItem('open_api_key', api_key)")
openai_api_key_textbox.change(set_openai_api_key,
inputs=[openai_api_key_textbox],
outputs=[chain_state, express_chain_state, llm_state, embeddings_state,
qa_chain_state, memory_state])
block.load(None, inputs=None, outputs=openai_api_key_textbox, _js="()=> localStorage.getItem('open_api_key')")
block.launch(debug=True)