File size: 13,981 Bytes
8a9d49c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
#############################################################################################################################
# Filename : app.py
# Description: A Streamlit application to showcase the importance of Responsible AI in LLMs.
# Author : Georgios Ioannou
#
# TODO: Add code for Google Gemma 7b and 7b-it.
# TODO: Write code documentation.
# Copyright © 2024 by Georgios Ioannou
#############################################################################################################################
# Import libraries.
import os # Load environment variable(s).
import requests # Send HTTP GET request to Hugging Face models for inference.
import streamlit as st # Build the GUI of the application.
import streamlit.components.v1 as components
from dataclasses import dataclass
from dotenv import find_dotenv, load_dotenv # Read local .env file.
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationChain
from langchain.llms import OpenAI
from policies import complex_policy, simple_policy
from transformers import pipeline # Access to Hugging Face models.
from typing import Literal
#############################################################################################################################
# Load environment variable(s).
load_dotenv(find_dotenv()) # Read local .env file.
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
#############################################################################################################################
@dataclass
class Message:
"""Class for keeping track of a chat message."""
origin: Literal["human", "ai"]
message: str
#############################################################################################################################
# Remeber (Keep history) user's message in each rendering of the application.
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = []
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if "policy" not in st.session_state:
st.session_state.policy = "No Policy"
if "is_gemma_model" not in st.session_state:
st.session_state.is_gemma_model = False
if "selected_ai_icon" not in st.session_state:
st.session_state.selected_ai_icon = "a1.png"
if "selected_user_icon" not in st.session_state:
st.session_state.selected_user_icon = "man.png"
#############################################################################################################################
def on_click_callback():
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt
# Policy + User Query Text.
role = "User" # This can be an Agent.
task = f"""
Task: Check if there is unsafe content in
'{role}' messages in conversations
according our safety policy with the below categories.
"""
output_format = f"""
Provide your safety assessment for '{role}' in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories.
"""
query = human_prompt
conversation = f"""
<BEGIN CONVERSATION>
User: {query}
<END CONVERSATION>
"""
if st.session_state.policy == "Simple Policy":
prompt = f"""
{task}
{simple_policy}
{conversation}
{output_format}
"""
elif st.session_state.policy == "Complex Policy":
prompt = f"""
{task}
{complex_policy}
{conversation}
{output_format}
"""
elif st.session_state.policy == "No Policy":
prompt = human_prompt
# Getting the llm response for safety check 1.
# "https://api-inference.huggingface.co/models/meta-llama/LlamaGuard-7b"
if st.session_state.is_gemma_model:
pass
else:
llm_response_safety_check_1 = st.session_state.conversation.run(prompt)
st.session_state.history.append(Message("human", human_prompt))
st.session_state.token_count += cb.total_tokens
# Checking if response is safe. Safety Check 1. Checking what goes in (user input).
if (
"unsafe" in llm_response_safety_check_1.lower()
): # If respone is unsafe return unsafe.
st.session_state.history.append(Message("ai", llm_response_safety_check_1))
return
else: # If respone is safe answer the question.
if st.session_state.is_gemma_model:
pass
else:
conversation_chain = ConversationChain(
llm=OpenAI(
temperature=0.2,
openai_api_key=OPENAI_API_KEY,
model_name=st.session_state.model,
),
)
llm_response = conversation_chain.run(human_prompt)
# st.session_state.history.append(Message("ai", llm_response))
st.session_state.token_count += cb.total_tokens
# Policy + LLM Response.
query = llm_response
conversation = f"""
<BEGIN CONVERSATION>
User: {query}
<END CONVERSATION>
"""
if st.session_state.policy == "Simple Policy":
prompt = f"""
{task}
{simple_policy}
{conversation}
{output_format}
"""
elif st.session_state.policy == "Complex Policy":
prompt = f"""
{task}
{complex_policy}
{conversation}
{output_format}
"""
elif st.session_state.policy == "No Policy":
prompt = llm_response
# Getting the llm response for safety check 2.
# "https://api-inference.huggingface.co/models/meta-llama/LlamaGuard-7b"
if st.session_state.is_gemma_model:
pass
else:
llm_response_safety_check_2 = st.session_state.conversation.run(prompt)
st.session_state.token_count += cb.total_tokens
# Checking if response is safe. Safety Check 2. Checking what goes out (llm output).
if (
"unsafe" in llm_response_safety_check_2.lower()
): # If respone is unsafe return.
st.session_state.history.append(
Message(
"ai",
"THIS FROM THE AUTHOR OF THE CODE: LLM WANTED TO RESPOND UNSAFELY!",
)
)
else:
st.session_state.history.append(Message("ai", llm_response))
#############################################################################################################################
# Function to apply local CSS.
def local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
#############################################################################################################################
# Main function to create the Streamlit web application.
def main():
# try:
initialize_session_state()
# Page title and favicon.
st.set_page_config(page_title="Responsible AI", page_icon="⚖️")
# Load CSS.
local_css("./static/styles/styles.css")
# Title.
title = f"""<h1 align="center" style="font-family: monospace; font-size: 2.1rem; margin-top: -4rem">
Responsible AI</h1>"""
st.markdown(title, unsafe_allow_html=True)
# Subtitle 1.
title = f"""<h3 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: -2rem">
Showcase the importance of Responsible AI in LLMs</h3>"""
st.markdown(title, unsafe_allow_html=True)
# Subtitle 2.
title = f"""<h2 align="center" style="font-family: monospace; font-size: 1.5rem; margin-top: 0rem">
CUNY Tech Prep Tutorial 6</h2>"""
st.markdown(title, unsafe_allow_html=True)
# Image.
image = "./static/ctp.png"
left_co, cent_co, last_co = st.columns(3)
with cent_co:
st.image(image=image)
# Sidebar dropdown menu for Models.
models = [
"gpt-4-turbo",
"gpt-4",
"gpt-3.5-turbo",
"gpt-3.5-turbo-instruct",
"gemma-7b",
"gemma-7b-it",
]
selected_model = st.sidebar.selectbox("Select Model:", models)
st.sidebar.write(f"Current Model: {selected_model}")
if selected_model == "gpt-4-turbo":
st.session_state.model = "gpt-4-turbo"
elif selected_model == "gpt-4":
st.session_state.model = "gpt-4"
elif selected_model == "gpt-3.5-turbo":
st.session_state.model = "gpt-3.5-turbo"
elif selected_model == "gpt-3.5-turbo-instruct":
st.session_state.model = "gpt-3.5-turbo-instruct"
elif selected_model == "gemma-7b":
st.session_state.model = "gemma-7b"
elif selected_model == "gemma-7b-it":
st.session_state.model = "gemma-7b-it"
if "gpt" in st.session_state.model:
st.session_state.conversation = ConversationChain(
llm=OpenAI(
temperature=0.2,
openai_api_key=OPENAI_API_KEY,
model_name=st.session_state.model,
),
)
elif "gemma" in st.session_state.model:
# Load model from Hugging Face.
st.session_state.is_gemma_model = True
pass
# Sidebar dropdown menu for Policies.
policies = ["No Policy", "Complex Policy", "Simple Policy"]
selected_policy = st.sidebar.selectbox("Select Policy:", policies)
st.sidebar.write(f"Current Policy: {selected_policy}")
if selected_policy == "No Policy":
st.session_state.policy = "No Policy"
elif selected_policy == "Complex Policy":
st.session_state.policy = "Complex Policy"
elif selected_policy == "Simple Policy":
st.session_state.policy = "Simple Policy"
# Sidebar dropdown menu for AI Icons.
ai_icons = ["AI 1", "AI 2"]
selected_ai_icon = st.sidebar.selectbox("AI Icon:", ai_icons)
st.sidebar.write(f"Current AI Icon: {selected_ai_icon}")
if selected_ai_icon == "AI 1":
st.session_state.selected_ai_icon = "ai1.png"
elif selected_ai_icon == "AI 2":
st.session_state.selected_ai_icon = "ai2.png"
# Sidebar dropdown menu for User Icons.
user_icons = ["Man", "Woman"]
selected_user_icon = st.sidebar.selectbox("User Icon:", user_icons)
st.sidebar.write(f"Current User Icon: {selected_user_icon}")
if selected_user_icon == "Man":
st.session_state.selected_user_icon = "man.png"
elif selected_user_icon == "Woman":
st.session_state.selected_user_icon = "woman.png"
# Placeholder for the chat messages.
chat_placeholder = st.container()
# Placeholder for the user input.
prompt_placeholder = st.form("chat-form")
token_placeholder = st.empty()
with chat_placeholder:
for chat in st.session_state.history:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="app/static/{
st.session_state.selected_ai_icon if chat.origin == 'ai'
else st.session_state.selected_user_icon}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
​{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
for _ in range(3):
st.markdown("")
# User prompt.
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
# Large text input in the left column.
cols[0].text_input(
"Chat",
placeholder="What is your question?",
label_visibility="collapsed",
key="human_prompt",
)
# Red button in the right column.
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=on_click_callback,
)
token_placeholder.caption(
f"""
Used {st.session_state.token_count} tokens \n
"""
)
# GitHub repository of author.
st.markdown(
f"""
<p align="center" style="font-family: monospace; color: #FAF9F6; font-size: 1rem;"><b> Check out our
<a href="https://github.com/GeorgiosIoannouCoder/" style="color: #FAF9F6;"> GitHub repository</a></b>
</p>
""",
unsafe_allow_html=True,
)
# Use the Enter key in the keyborad to click on the Submit button.
components.html(
"""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
#############################################################################################################################
if __name__ == "__main__":
main()
|