Gosula commited on
Commit
473101c
1 Parent(s): c83bfd2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +128 -0
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import peft
4
+ from peft import LoraConfig, PeftModel
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPVisionModel, AutoProcessor
6
+ import torch
7
+ from PIL import Image
8
+ import requests
9
+ import numpy as np
10
+ import torch.nn as nn
11
+ import whisperx
12
+ import ffmpeg, pydub
13
+ from pydub import AudioSegment
14
+
15
+ clip_model_name = "wkcn/TinyCLIP-ViT-61M-32-Text-29M-LAION400M"
16
+ phi_model_name = "microsoft/phi-2"
17
+
18
+ tokenizer = AutoTokenizer.from_pretrained(phi_model_name, trust_remote_code=True)
19
+ processor = AutoProcessor.from_pretrained(clip_model_name)
20
+ tokenizer.pad_token = tokenizer.eos_token
21
+ IMAGE_TOKEN_ID = 23893 # token for word comment
22
+ device = "cuda" if torch.cuda.is_available() else "cpu"
23
+ clip_embed = 640
24
+ phi_embed = 2560
25
+ compute_type = "float32"
26
+ audio_batch_size = 1
27
+
28
+ import gc
29
+
30
+ # models
31
+ clip_model = CLIPVisionModel.from_pretrained(clip_model_name).to(device)
32
+
33
+ projection = torch.nn.Linear(clip_embed, phi_embed).to(device)
34
+
35
+ gc.collect()
36
+ phi_model = AutoModelForCausalLM.from_pretrained(
37
+ phi_model_name,
38
+ trust_remote_code=True,
39
+ )
40
+ audio_model = whisperx.load_model("small", device, compute_type=compute_type)
41
+
42
+ # load weights
43
+ model_to_merge = PeftModel.from_pretrained(phi_model,'./model_chkpt/')
44
+ merged_model = model_to_merge.merge_and_unload().to(device)
45
+ projection.load_state_dict(torch.load('./ft_projection.pth',map_location=torch.device(device)))
46
+
47
+ def inference(img=None,img_audio=None,val_q=None):
48
+
49
+ max_generate_length = 50
50
+ val_combined_embeds = []
51
+
52
+ with torch.no_grad():
53
+
54
+ # image
55
+ if img is not None:
56
+ image_processed = processor(images=img, return_tensors="pt").to(device)
57
+ clip_val_outputs = clip_model(**image_processed).last_hidden_state[:,1:,:]
58
+ val_image_embeds = projection(clip_val_outputs)
59
+
60
+ img_token_tensor = torch.tensor(IMAGE_TOKEN_ID).to(device)
61
+ img_token_embeds = merged_model.model.embed_tokens(img_token_tensor).unsqueeze(0).unsqueeze(0)
62
+
63
+ val_combined_embeds.append(val_image_embeds)
64
+ val_combined_embeds.append(img_token_embeds)
65
+
66
+ # audio
67
+ if img_audio is not None:
68
+
69
+ # accepting only initial few secs speech
70
+ audio = AudioSegment.from_mp3( img_audio)
71
+ clipped_audio = audio[:20*1000]
72
+ clipped_audio.export( 'audio.mp3', format="mp3")
73
+ result = audio_model.transcribe('audio.mp3')
74
+ audio_text = ''
75
+
76
+ audio_text = result["segments"][0]['text']
77
+ audio_text = audio_text.strip()
78
+ audio_tokens = tokenizer(audio_text, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
79
+ audio_embeds = merged_model.model.embed_tokens(audio_tokens).unsqueeze(0)
80
+ val_combined_embeds.append(audio_embeds)
81
+
82
+ # text question
83
+ if len(val_q) != 0:
84
+ val_q_tokenised = tokenizer(val_q, return_tensors="pt", return_attention_mask=False)['input_ids'].squeeze(0).to(device)
85
+ val_q_embeds = merged_model.model.embed_tokens(val_q_tokenised).unsqueeze(0)
86
+ val_combined_embeds.append(val_q_embeds)
87
+
88
+ # val_combined_emb
89
+ val_combined_embeds = torch.cat(val_combined_embeds,dim=1)
90
+
91
+ predicted_caption = torch.full((1,max_generate_length),50256).to(device)
92
+
93
+ for g in range(max_generate_length):
94
+ phi_output_logits = merged_model(inputs_embeds=val_combined_embeds)['logits']
95
+ predicted_word_token_logits = phi_output_logits[:, -1, :].unsqueeze(1)
96
+ predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1)
97
+ predicted_caption[:,g] = predicted_word_token.view(1,-1)
98
+ next_token_embeds = phi_model.model.embed_tokens(predicted_word_token)
99
+ val_combined_embeds = torch.cat([val_combined_embeds, next_token_embeds], dim=1)
100
+
101
+ predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
102
+
103
+ return predicted_captions_decoded
104
+
105
+ with gr.Blocks() as demo:
106
+
107
+ gr.Markdown(
108
+ """
109
+ # multi-modalLLM
110
+ Build using Tiny Clip model and Microsoft's Phi-2 model fine tuned on Instruct 150k.
111
+ """
112
+ )
113
+
114
+ # app GUI
115
+ with gr.Row():
116
+ with gr.Column():
117
+ img_input = gr.Image(label='Reference Image',type="pil")
118
+ img_question = gr.Text(label ='Question related to Image')
119
+ img_audio = gr.Audio(label="Speak a question", sources=['microphone', 'upload'], type='filepath')
120
+ with gr.Column():
121
+ img_answer = gr.Text(label ='Response')
122
+
123
+ section_btn = gr.Button("Process")
124
+ section_btn.click(inference, inputs=[img_input,img_audio,img_question], outputs=[img_answer])
125
+
126
+ if __name__ == "__main__":
127
+ demo.launch(debug=True)
128
+