GouthamVarma commited on
Commit
49ba027
1 Parent(s): 86718ad

Add dataset download functionality

Browse files
Files changed (4) hide show
  1. .gitignore +1 -0
  2. README.md +29 -3
  3. app.py +11 -0
  4. requirements.txt +8 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ song_dataset.csv
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Not Spotify But Close
3
- emoji: 📊
4
  colorFrom: blue
5
  colorTo: pink
6
  sdk: gradio
@@ -8,7 +8,33 @@ sdk_version: 5.5.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
- short_description: 🎵 Your Personal Music Matchmaker🎧
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Not Spotify But Close
3
+ emoji: 🎵
4
  colorFrom: blue
5
  colorTo: pink
6
  sdk: gradio
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
+ short_description: Your Personal Music Matchmaker 🎧
12
  ---
13
 
14
+ # 🎵 Not Spotify But Close
15
+
16
+ Ever wished you had a friend with impeccable music taste who just *gets* your vibe? Meet your AI-powered music recommendation companion!
17
+
18
+ ## 🎧 What's Cooking?
19
+ Using the power of collaborative filtering, we analyze over 100,000 real listening patterns to suggest music that's perfectly paired with your taste.
20
+
21
+ ## 🎮 How to Use
22
+ 1. 🔍 Search for songs you love
23
+ 2. ✨ Pick up to 5 of your favorites
24
+ 3. 🎯 Hit "Get Recommendations" and watch the magic happen!
25
+
26
+ ## 🎼 Features
27
+ - Lightning-fast song search
28
+ - Detailed recommendations including artist and release year
29
+ - Clean, intuitive interface
30
+ - No account needed - just search and discover!
31
+
32
+ ## 🛠 Technical Stack
33
+ - Built with Python, Gradio, and scikit-learn
34
+ - Powered by collaborative filtering algorithms
35
+ - Trained on real-world listening data
36
+
37
+ Made with ❤️ for music lovers, by music lovers.
38
+
39
+ ---
40
+ *Note: This is a demo project and not affiliated with any music streaming service.*
app.py CHANGED
@@ -3,7 +3,18 @@ import numpy as np
3
  import pandas as pd
4
  from sklearn.metrics.pairwise import cosine_similarity
5
  import gradio as gr
 
 
6
 
 
 
 
 
 
 
 
 
 
7
  # Load the data
8
  df = pd.read_csv('song_dataset.csv')
9
 
 
3
  import pandas as pd
4
  from sklearn.metrics.pairwise import cosine_similarity
5
  import gradio as gr
6
+ import gdown
7
+ import os
8
 
9
+ # Add this at the start of your script
10
+ def download_dataset():
11
+ if not os.path.exists('song_dataset.csv'):
12
+ # Replace with your Google Drive file ID
13
+ url = "https://docs.google.com/spreadsheets/d/1MKqJmWQ1PxKHDkpIdbQEeTz_ohpjOsYPyVp6esEZsq4/"
14
+ gdown.download(url, 'song_dataset.csv', quiet=False)
15
+
16
+ # Add this line before loading the dataset
17
+ download_dataset()
18
  # Load the data
19
  df = pd.read_csv('song_dataset.csv')
20
 
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ numpy>=1.21.0
2
+ pandas>=1.3.0
3
+ matplotlib>=3.4.0
4
+ seaborn>=0.11.0
5
+ plotly>=5.0.0
6
+ scikit-learn>=0.24.0
7
+ gradio>=5.5.0
8
+ gdown>=4.7.0