GouthamVarma
commited on
Commit
•
e803c5d
1
Parent(s):
9bf2b1d
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Convert the relevant parts of your notebook into a Python script
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load the data
|
8 |
+
df = pd.read_csv('song_dataset.csv')
|
9 |
+
|
10 |
+
# Create user-song matrix
|
11 |
+
interaction_matrix = df.pivot_table(
|
12 |
+
index='user',
|
13 |
+
columns='song',
|
14 |
+
values='play_count',
|
15 |
+
fill_value=0
|
16 |
+
)
|
17 |
+
|
18 |
+
def search_songs(query):
|
19 |
+
if not query or len(query) < 2:
|
20 |
+
return gr.update(choices=[])
|
21 |
+
try:
|
22 |
+
matches = song_choices[
|
23 |
+
song_choices['display'].str.lower().str.contains(query.lower(), regex=False)
|
24 |
+
]['display'].tolist()
|
25 |
+
return gr.update(choices=matches[:10])
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Search error: {e}")
|
28 |
+
return gr.update(choices=[])
|
29 |
+
|
30 |
+
def add_to_selection(new_song, current_selections):
|
31 |
+
if not current_selections:
|
32 |
+
current_selections = []
|
33 |
+
|
34 |
+
if new_song and new_song not in current_selections and len(current_selections) < 5:
|
35 |
+
current_selections.append(new_song)
|
36 |
+
|
37 |
+
return gr.update(choices=current_selections, value=current_selections)
|
38 |
+
|
39 |
+
def make_recommendations(selected_songs, n_recommendations=5):
|
40 |
+
if not selected_songs:
|
41 |
+
return "Please select at least one song to get recommendations."
|
42 |
+
|
43 |
+
temp_user_profile = pd.Series(0, index=interaction_matrix.columns)
|
44 |
+
for song in selected_songs:
|
45 |
+
song_id = song_choices[song_choices['display'] == song]['song'].iloc[0]
|
46 |
+
temp_user_profile[song_id] = 1
|
47 |
+
|
48 |
+
user_sim = cosine_similarity([temp_user_profile], interaction_matrix)[0]
|
49 |
+
|
50 |
+
unheard_songs = list(set(interaction_matrix.columns) -
|
51 |
+
set([song_choices[song_choices['display'] == song]['song'].iloc[0]
|
52 |
+
for song in selected_songs]))
|
53 |
+
|
54 |
+
pred_ratings = []
|
55 |
+
for song in unheard_songs:
|
56 |
+
pred = np.sum(user_sim * interaction_matrix[song]) / np.sum(np.abs(user_sim))
|
57 |
+
pred_ratings.append((song, pred))
|
58 |
+
|
59 |
+
ratings = np.array([r[1] for r in pred_ratings])
|
60 |
+
if len(ratings) > 0:
|
61 |
+
min_rating, max_rating = ratings.min(), ratings.max()
|
62 |
+
if max_rating > min_rating:
|
63 |
+
normalized_ratings = 1 + 4 * (ratings - min_rating) / (max_rating - min_rating)
|
64 |
+
else:
|
65 |
+
normalized_ratings = [3.0] * len(ratings)
|
66 |
+
else:
|
67 |
+
return "No recommendations found for the selected songs."
|
68 |
+
|
69 |
+
recommendations = list(zip([r[0] for r in pred_ratings], normalized_ratings))
|
70 |
+
recommendations = sorted(recommendations, key=lambda x: x[1], reverse=True)[:n_recommendations]
|
71 |
+
|
72 |
+
output = ""
|
73 |
+
for song_id, rating in recommendations:
|
74 |
+
song_details = df[df['song'] == song_id].iloc[0]
|
75 |
+
output += f"Title: {song_details['title']}\n"
|
76 |
+
output += f"Artist: {song_details['artist_name']}\n"
|
77 |
+
output += f"Year: {song_details['year']}\n"
|
78 |
+
output += f"Rating: {rating:.2f}/5.00\n"
|
79 |
+
output += "-" * 50 + "\n"
|
80 |
+
|
81 |
+
return output
|
82 |
+
|
83 |
+
# Create song choices for dropdown
|
84 |
+
song_choices = df[['song', 'title', 'artist_name']].drop_duplicates()
|
85 |
+
song_choices['display'] = song_choices['title'] + " - " + song_choices['artist_name']
|
86 |
+
song_list = song_choices['display'].tolist()
|
87 |
+
|
88 |
+
# Create Gradio interface
|
89 |
+
with gr.Blocks(title="Wanna Be Spotify") as iface:
|
90 |
+
gr.Markdown("# 🎵 Wanna Be Spotify")
|
91 |
+
gr.Markdown("Search and select up to 5 songs you've enjoyed to get personalized recommendations!")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
search_box = gr.Textbox(
|
95 |
+
label="Search for songs",
|
96 |
+
placeholder="Type song or artist name...",
|
97 |
+
show_label=True
|
98 |
+
)
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
search_results = gr.Radio(
|
102 |
+
choices=[],
|
103 |
+
label="Search Results",
|
104 |
+
interactive=True,
|
105 |
+
show_label=True
|
106 |
+
)
|
107 |
+
|
108 |
+
with gr.Row():
|
109 |
+
selected_songs = gr.Dropdown(
|
110 |
+
choices=[],
|
111 |
+
label="Selected Songs",
|
112 |
+
interactive=True,
|
113 |
+
multiselect=True,
|
114 |
+
max_choices=5,
|
115 |
+
show_label=True
|
116 |
+
)
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
recommendations = gr.Textbox(
|
120 |
+
label="Recommendations",
|
121 |
+
interactive=False,
|
122 |
+
lines=10,
|
123 |
+
show_label=True
|
124 |
+
)
|
125 |
+
|
126 |
+
submit_btn = gr.Button("Get Recommendations")
|
127 |
+
|
128 |
+
search_box.change(
|
129 |
+
fn=search_songs,
|
130 |
+
inputs=[search_box],
|
131 |
+
outputs=[search_results]
|
132 |
+
)
|
133 |
+
|
134 |
+
search_results.change(
|
135 |
+
fn=add_to_selection,
|
136 |
+
inputs=[search_results, selected_songs],
|
137 |
+
outputs=[selected_songs]
|
138 |
+
)
|
139 |
+
|
140 |
+
submit_btn.click(
|
141 |
+
fn=make_recommendations,
|
142 |
+
inputs=[selected_songs],
|
143 |
+
outputs=[recommendations]
|
144 |
+
)
|
145 |
+
|
146 |
+
# Launch the interface
|
147 |
+
iface.launch()
|