SakuraD's picture
update
210b510
import os.path as osp
from argparse import ArgumentParser
import mmcv
import numpy as np
def print_coco_results(results):
def _print(result, ap=1, iouThr=None, areaRng='all', maxDets=100):
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap == 1 else '(AR)'
iouStr = '0.50:0.95' \
if iouThr is None else f'{iouThr:0.2f}'
iStr = f' {titleStr:<18} {typeStr} @[ IoU={iouStr:<9} | '
iStr += f'area={areaRng:>6s} | maxDets={maxDets:>3d} ] = {result:0.3f}'
print(iStr)
stats = np.zeros((12, ))
stats[0] = _print(results[0], 1)
stats[1] = _print(results[1], 1, iouThr=.5)
stats[2] = _print(results[2], 1, iouThr=.75)
stats[3] = _print(results[3], 1, areaRng='small')
stats[4] = _print(results[4], 1, areaRng='medium')
stats[5] = _print(results[5], 1, areaRng='large')
stats[6] = _print(results[6], 0, maxDets=1)
stats[7] = _print(results[7], 0, maxDets=10)
stats[8] = _print(results[8], 0)
stats[9] = _print(results[9], 0, areaRng='small')
stats[10] = _print(results[10], 0, areaRng='medium')
stats[11] = _print(results[11], 0, areaRng='large')
def get_coco_style_results(filename,
task='bbox',
metric=None,
prints='mPC',
aggregate='benchmark'):
assert aggregate in ['benchmark', 'all']
if prints == 'all':
prints = ['P', 'mPC', 'rPC']
elif isinstance(prints, str):
prints = [prints]
for p in prints:
assert p in ['P', 'mPC', 'rPC']
if metric is None:
metrics = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
'ARs', 'ARm', 'ARl'
]
elif isinstance(metric, list):
metrics = metric
else:
metrics = [metric]
for metric_name in metrics:
assert metric_name in [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10', 'AR100',
'ARs', 'ARm', 'ARl'
]
eval_output = mmcv.load(filename)
num_distortions = len(list(eval_output.keys()))
results = np.zeros((num_distortions, 6, len(metrics)), dtype='float32')
for corr_i, distortion in enumerate(eval_output):
for severity in eval_output[distortion]:
for metric_j, metric_name in enumerate(metrics):
mAP = eval_output[distortion][severity][task][metric_name]
results[corr_i, severity, metric_j] = mAP
P = results[0, 0, :]
if aggregate == 'benchmark':
mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
else:
mPC = np.mean(results[:, 1:, :], axis=(0, 1))
rPC = mPC / P
print(f'\nmodel: {osp.basename(filename)}')
if metric is None:
if 'P' in prints:
print(f'Performance on Clean Data [P] ({task})')
print_coco_results(P)
if 'mPC' in prints:
print(f'Mean Performance under Corruption [mPC] ({task})')
print_coco_results(mPC)
if 'rPC' in prints:
print(f'Relative Performance under Corruption [rPC] ({task})')
print_coco_results(rPC)
else:
if 'P' in prints:
print(f'Performance on Clean Data [P] ({task})')
for metric_i, metric_name in enumerate(metrics):
print(f'{metric_name:5} = {P[metric_i]:0.3f}')
if 'mPC' in prints:
print(f'Mean Performance under Corruption [mPC] ({task})')
for metric_i, metric_name in enumerate(metrics):
print(f'{metric_name:5} = {mPC[metric_i]:0.3f}')
if 'rPC' in prints:
print(f'Relative Performance under Corruption [rPC] ({task})')
for metric_i, metric_name in enumerate(metrics):
print(f'{metric_name:5} => {rPC[metric_i] * 100:0.1f} %')
return results
def get_voc_style_results(filename, prints='mPC', aggregate='benchmark'):
assert aggregate in ['benchmark', 'all']
if prints == 'all':
prints = ['P', 'mPC', 'rPC']
elif isinstance(prints, str):
prints = [prints]
for p in prints:
assert p in ['P', 'mPC', 'rPC']
eval_output = mmcv.load(filename)
num_distortions = len(list(eval_output.keys()))
results = np.zeros((num_distortions, 6, 20), dtype='float32')
for i, distortion in enumerate(eval_output):
for severity in eval_output[distortion]:
mAP = [
eval_output[distortion][severity][j]['ap']
for j in range(len(eval_output[distortion][severity]))
]
results[i, severity, :] = mAP
P = results[0, 0, :]
if aggregate == 'benchmark':
mPC = np.mean(results[:15, 1:, :], axis=(0, 1))
else:
mPC = np.mean(results[:, 1:, :], axis=(0, 1))
rPC = mPC / P
print(f'\nmodel: {osp.basename(filename)}')
if 'P' in prints:
print(f'Performance on Clean Data [P] in AP50 = {np.mean(P):0.3f}')
if 'mPC' in prints:
print('Mean Performance under Corruption [mPC] in AP50 = '
f'{np.mean(mPC):0.3f}')
if 'rPC' in prints:
print('Relative Performance under Corruption [rPC] in % = '
f'{np.mean(rPC) * 100:0.1f}')
return np.mean(results, axis=2, keepdims=True)
def get_results(filename,
dataset='coco',
task='bbox',
metric=None,
prints='mPC',
aggregate='benchmark'):
assert dataset in ['coco', 'voc', 'cityscapes']
if dataset in ['coco', 'cityscapes']:
results = get_coco_style_results(
filename,
task=task,
metric=metric,
prints=prints,
aggregate=aggregate)
elif dataset == 'voc':
if task != 'bbox':
print('Only bbox analysis is supported for Pascal VOC')
print('Will report bbox results\n')
if metric not in [None, ['AP'], ['AP50']]:
print('Only the AP50 metric is supported for Pascal VOC')
print('Will report AP50 metric\n')
results = get_voc_style_results(
filename, prints=prints, aggregate=aggregate)
return results
def get_distortions_from_file(filename):
eval_output = mmcv.load(filename)
return get_distortions_from_results(eval_output)
def get_distortions_from_results(eval_output):
distortions = []
for i, distortion in enumerate(eval_output):
distortions.append(distortion.replace('_', ' '))
return distortions
def main():
parser = ArgumentParser(description='Corruption Result Analysis')
parser.add_argument('filename', help='result file path')
parser.add_argument(
'--dataset',
type=str,
choices=['coco', 'voc', 'cityscapes'],
default='coco',
help='dataset type')
parser.add_argument(
'--task',
type=str,
nargs='+',
choices=['bbox', 'segm'],
default=['bbox'],
help='task to report')
parser.add_argument(
'--metric',
nargs='+',
choices=[
None, 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'AR1', 'AR10',
'AR100', 'ARs', 'ARm', 'ARl'
],
default=None,
help='metric to report')
parser.add_argument(
'--prints',
type=str,
nargs='+',
choices=['P', 'mPC', 'rPC'],
default='mPC',
help='corruption benchmark metric to print')
parser.add_argument(
'--aggregate',
type=str,
choices=['all', 'benchmark'],
default='benchmark',
help='aggregate all results or only those \
for benchmark corruptions')
args = parser.parse_args()
for task in args.task:
get_results(
args.filename,
dataset=args.dataset,
task=task,
metric=args.metric,
prints=args.prints,
aggregate=args.aggregate)
if __name__ == '__main__':
main()