Spaces:
Build error
Build error
import argparse | |
import glob | |
import os.path as osp | |
import cityscapesscripts.helpers.labels as CSLabels | |
import mmcv | |
import numpy as np | |
import pycocotools.mask as maskUtils | |
def collect_files(img_dir, gt_dir): | |
suffix = 'leftImg8bit.png' | |
files = [] | |
for img_file in glob.glob(osp.join(img_dir, '**/*.png')): | |
assert img_file.endswith(suffix), img_file | |
inst_file = gt_dir + img_file[ | |
len(img_dir):-len(suffix)] + 'gtFine_instanceIds.png' | |
# Note that labelIds are not converted to trainId for seg map | |
segm_file = gt_dir + img_file[ | |
len(img_dir):-len(suffix)] + 'gtFine_labelIds.png' | |
files.append((img_file, inst_file, segm_file)) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, nproc=1): | |
print('Loading annotation images') | |
if nproc > 1: | |
images = mmcv.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmcv.track_progress(load_img_info, files) | |
return images | |
def load_img_info(files): | |
img_file, inst_file, segm_file = files | |
inst_img = mmcv.imread(inst_file, 'unchanged') | |
# ids < 24 are stuff labels (filtering them first is about 5% faster) | |
unique_inst_ids = np.unique(inst_img[inst_img >= 24]) | |
anno_info = [] | |
for inst_id in unique_inst_ids: | |
# For non-crowd annotations, inst_id // 1000 is the label_id | |
# Crowd annotations have <1000 instance ids | |
label_id = inst_id // 1000 if inst_id >= 1000 else inst_id | |
label = CSLabels.id2label[label_id] | |
if not label.hasInstances or label.ignoreInEval: | |
continue | |
category_id = label.id | |
iscrowd = int(inst_id < 1000) | |
mask = np.asarray(inst_img == inst_id, dtype=np.uint8, order='F') | |
mask_rle = maskUtils.encode(mask[:, :, None])[0] | |
area = maskUtils.area(mask_rle) | |
# convert to COCO style XYWH format | |
bbox = maskUtils.toBbox(mask_rle) | |
# for json encoding | |
mask_rle['counts'] = mask_rle['counts'].decode() | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=category_id, | |
bbox=bbox.tolist(), | |
area=area.tolist(), | |
segmentation=mask_rle) | |
anno_info.append(anno) | |
video_name = osp.basename(osp.dirname(img_file)) | |
img_info = dict( | |
# remove img_prefix for filename | |
file_name=osp.join(video_name, osp.basename(img_file)), | |
height=inst_img.shape[0], | |
width=inst_img.shape[1], | |
anno_info=anno_info, | |
segm_file=osp.join(video_name, osp.basename(segm_file))) | |
return img_info | |
def cvt_annotations(image_infos, out_json_name): | |
out_json = dict() | |
img_id = 0 | |
ann_id = 0 | |
out_json['images'] = [] | |
out_json['categories'] = [] | |
out_json['annotations'] = [] | |
for image_info in image_infos: | |
image_info['id'] = img_id | |
anno_infos = image_info.pop('anno_info') | |
out_json['images'].append(image_info) | |
for anno_info in anno_infos: | |
anno_info['image_id'] = img_id | |
anno_info['id'] = ann_id | |
out_json['annotations'].append(anno_info) | |
ann_id += 1 | |
img_id += 1 | |
for label in CSLabels.labels: | |
if label.hasInstances and not label.ignoreInEval: | |
cat = dict(id=label.id, name=label.name) | |
out_json['categories'].append(cat) | |
if len(out_json['annotations']) == 0: | |
out_json.pop('annotations') | |
mmcv.dump(out_json, out_json_name) | |
return out_json | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert Cityscapes annotations to COCO format') | |
parser.add_argument('cityscapes_path', help='cityscapes data path') | |
parser.add_argument('--img-dir', default='leftImg8bit', type=str) | |
parser.add_argument('--gt-dir', default='gtFine', type=str) | |
parser.add_argument('-o', '--out-dir', help='output path') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
cityscapes_path = args.cityscapes_path | |
out_dir = args.out_dir if args.out_dir else cityscapes_path | |
mmcv.mkdir_or_exist(out_dir) | |
img_dir = osp.join(cityscapes_path, args.img_dir) | |
gt_dir = osp.join(cityscapes_path, args.gt_dir) | |
set_name = dict( | |
train='instancesonly_filtered_gtFine_train.json', | |
val='instancesonly_filtered_gtFine_val.json', | |
test='instancesonly_filtered_gtFine_test.json') | |
for split, json_name in set_name.items(): | |
print(f'Converting {split} into {json_name}') | |
with mmcv.Timer( | |
print_tmpl='It took {}s to convert Cityscapes annotation'): | |
files = collect_files( | |
osp.join(img_dir, split), osp.join(gt_dir, split)) | |
image_infos = collect_annotations(files, nproc=args.nproc) | |
cvt_annotations(image_infos, osp.join(out_dir, json_name)) | |
if __name__ == '__main__': | |
main() | |