Spaces:
Runtime error
Runtime error
Update game3.py
Browse files
game3.py
CHANGED
@@ -1,17 +1,349 @@
|
|
1 |
import requests
|
2 |
import random
|
3 |
import time
|
|
|
|
|
|
|
4 |
|
5 |
-
def
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
headers = {"Authorization": "Bearer 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"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
output = response.json()
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
2 |
import random
|
3 |
import time
|
4 |
+
import pandas as pd
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
def read3(lang, num_selected_former):
|
9 |
+
if lang in ['en']:
|
10 |
+
fname = 'data1_en.txt'
|
11 |
+
else:
|
12 |
+
fname = 'data1_nl_10.txt'
|
13 |
+
with open(fname, encoding='utf-8') as f:
|
14 |
+
content = f.readlines()
|
15 |
+
index_selected = random.randint(0,len(content)/2-1)
|
16 |
+
while index_selected == num_selected_former:
|
17 |
+
index_selected = random.randint(0,len(content)/2-1)
|
18 |
+
text = eval(content[index_selected*2])
|
19 |
+
interpretation = eval(content[int(index_selected*2+1)])
|
20 |
+
if lang == 'en':
|
21 |
+
min_len = 4
|
22 |
+
else:
|
23 |
+
min_len = 2
|
24 |
+
tokens = [i[0] for i in interpretation]
|
25 |
+
tokens = tokens[1:-1]
|
26 |
+
while len(tokens) <= min_len or '\\' in text['text'] or '//' in text['text']:
|
27 |
+
index_selected = random.randint(0,len(content)/2-1)
|
28 |
+
text = eval(content[int(index_selected*2)])
|
29 |
+
res_tmp = [(i, 0) for i in text['text'].split(' ')]
|
30 |
+
res = {"original": text['text'], "interpretation": res_tmp}
|
31 |
+
# res_empty = {"original": "", "interpretation": []}
|
32 |
+
|
33 |
+
# res = []
|
34 |
+
# res.append(("P", "+"))
|
35 |
+
# res.append(("/", None))
|
36 |
+
# res.append(("N", "-"))
|
37 |
+
# res.append(("Review:", None))
|
38 |
+
# for i in text['text'].split(' '):
|
39 |
+
# res.append((i, None))
|
40 |
+
# res_empty = None
|
41 |
+
# checkbox_update = gr.CheckboxGroup.update(choices=tokens, value=None)
|
42 |
+
|
43 |
+
return res, lang, index_selected
|
44 |
+
|
45 |
+
def func3(lang_selected, num_selected, human_predict, num1, num2, user_important):
|
46 |
+
chatbot = []
|
47 |
+
# num1: Human score; num2: AI score
|
48 |
+
if lang_selected in ['en']:
|
49 |
+
fname = 'data1_en.txt'
|
50 |
+
else:
|
51 |
+
fname = 'data1_nl_10.txt'
|
52 |
+
with open(fname) as f:
|
53 |
+
content = f.readlines()
|
54 |
+
text = eval(content[int(num_selected*2)])
|
55 |
+
interpretation = eval(content[int(num_selected*2+1)])
|
56 |
+
if lang_selected in ['en']:
|
57 |
+
golden_label = text['label'] * 25
|
58 |
+
else:
|
59 |
+
golden_label = text['label'] * 100
|
60 |
+
|
61 |
+
'''
|
62 |
+
# (START) API version -- quick
|
63 |
+
|
64 |
+
API_URL = "https://api-inference.huggingface.co/models/nlptown/bert-base-multilingual-uncased-sentiment"
|
65 |
+
# API_URL = "https://api-inference.huggingface.co/models/cmarkea/distilcamembert-base-sentiment"
|
66 |
headers = {"Authorization": "Bearer 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"}
|
67 |
+
|
68 |
+
response = requests.post(API_URL, headers=headers, json=text['text'])
|
69 |
+
output = response.json()
|
70 |
+
|
71 |
+
# result = dict()
|
72 |
+
star2num = {
|
73 |
+
"5 stars": 100,
|
74 |
+
"4 stars": 75,
|
75 |
+
"3 stars": 50,
|
76 |
+
"2 stars": 25,
|
77 |
+
"1 star": 0,
|
78 |
+
}
|
79 |
+
|
80 |
+
print(output)
|
81 |
+
out = output[0][0]
|
82 |
+
# (END) API version
|
83 |
+
'''
|
84 |
+
|
85 |
+
# (START) off-the-shelf version -- slow at the beginning
|
86 |
+
# Load model directly
|
87 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
88 |
+
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
90 |
+
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
91 |
+
|
92 |
+
# Use a pipeline as a high-level helper
|
93 |
+
from transformers import pipeline
|
94 |
+
|
95 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
96 |
+
output = classifier([text['text']])
|
97 |
+
|
98 |
+
star2num = {
|
99 |
+
"5 stars": 100,
|
100 |
+
"4 stars": 75,
|
101 |
+
"3 stars": 50,
|
102 |
+
"2 stars": 25,
|
103 |
+
"1 star": 0,
|
104 |
+
}
|
105 |
+
print(output)
|
106 |
+
out = output[0]
|
107 |
+
|
108 |
+
# (END) off-the-shelf version
|
109 |
+
|
110 |
+
ai_predict = star2num[out['label']]
|
111 |
+
# result[label] = out['score']
|
112 |
+
|
113 |
+
user_select = "You focused on "
|
114 |
+
flag_select = False
|
115 |
+
if user_important == "":
|
116 |
+
user_select += "nothing. Interesting! "
|
117 |
+
else:
|
118 |
+
user_select += user_important
|
119 |
+
user_select += ". "
|
120 |
+
# for i in range(len(user_marks)):
|
121 |
+
# if user_marks[i][1] != None and h1[i][0] not in ["P", "N"]:
|
122 |
+
# flag_select = True
|
123 |
+
# user_select += "'" + h1[i][0] + "'"
|
124 |
+
# if i == len(h1) - 1:
|
125 |
+
# user_select += ". "
|
126 |
+
# else:
|
127 |
+
# user_select += ", "
|
128 |
+
# if not flag_select:
|
129 |
+
# user_select += "nothing. Interesting! "
|
130 |
+
user_select += "Wanna see how the AI made the guess? Click here. β¬
οΈ"
|
131 |
+
if lang_selected in ['en']:
|
132 |
+
if ai_predict == golden_label:
|
133 |
+
if abs(human_predict - golden_label) < 12.5: # Both correct
|
134 |
+
golden_label = int((human_predict + ai_predict) / 2)
|
135 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Congratulations! π Both of you get the correct answer!", user_select))
|
136 |
+
num1 += 1
|
137 |
+
num2 += 1
|
138 |
+
else:
|
139 |
+
golden_label += random.randint(-2, 2)
|
140 |
+
while golden_label > 100 or golden_label < 0 or golden_label % 25 == 0:
|
141 |
+
golden_label += random.randint(-2, 2)
|
142 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. AI wins in this round.", user_select))
|
143 |
+
num2 += 1
|
144 |
+
else:
|
145 |
+
if abs(human_predict - golden_label) < abs(ai_predict - golden_label):
|
146 |
+
if abs(human_predict - golden_label) < 12.5:
|
147 |
+
golden_label = int((golden_label + human_predict) / 2)
|
148 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Great! π You are closer to the answer and better than AI!", user_select))
|
149 |
+
num1 += 1
|
150 |
+
else:
|
151 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Both wrong... Maybe next time you'll win!", user_select))
|
152 |
+
else:
|
153 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. No one gets the correct answer. But nice try! π", user_select))
|
154 |
+
else:
|
155 |
+
if golden_label == 100:
|
156 |
+
if ai_predict > 50 and human_predict > 50:
|
157 |
+
golden_label = int((human_predict + ai_predict)/2) + random.randint(-10, 10)
|
158 |
+
while golden_label > 100:
|
159 |
+
golden_label = int((human_predict + ai_predict)/2) + random.randint(-10, 10)
|
160 |
+
ai_predict = int((golden_label + ai_predict) / 2)
|
161 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Congratulations! π Both of you get the correct answer!", user_select))
|
162 |
+
num1 += 1
|
163 |
+
num2 += 1
|
164 |
+
elif ai_predict > 50 and human_predict <= 50:
|
165 |
+
golden_label -= random.randint(0, 10)
|
166 |
+
ai_predict = 90 + random.randint(-5, 5)
|
167 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. AI wins in this round.", user_select))
|
168 |
+
num2 += 1
|
169 |
+
elif ai_predict <= 50 and human_predict > 50:
|
170 |
+
golden_label = human_predict + random.randint(-4, 4)
|
171 |
+
while golden_label > 100:
|
172 |
+
golden_label = human_predict + random.randint(-4, 4)
|
173 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Great! π You are close to the answer and better than AI!", user_select))
|
174 |
+
num1 += 1
|
175 |
+
else:
|
176 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry... No one gets the correct answer. But nice try! π", user_select))
|
177 |
+
else:
|
178 |
+
if ai_predict < 50 and human_predict < 50:
|
179 |
+
golden_label = int((human_predict + ai_predict)/2) + random.randint(-10, 10)
|
180 |
+
while golden_label < 0:
|
181 |
+
golden_label = int((human_predict + ai_predict)/2) + random.randint(-10, 10)
|
182 |
+
ai_predict = int((golden_label + ai_predict) / 2)
|
183 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Congratulations! π Both of you get the correct answer!", user_select))
|
184 |
+
num1 += 1
|
185 |
+
num2 += 1
|
186 |
+
elif ai_predict < 50 and human_predict >= 50:
|
187 |
+
golden_label += random.randint(0, 10)
|
188 |
+
ai_predict = 10 + random.randint(-5, 5)
|
189 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry.. AI wins in this round.", user_select))
|
190 |
+
num2 += 1
|
191 |
+
elif ai_predict >= 50 and human_predict < 50:
|
192 |
+
golden_label = human_predict + random.randint(-4, 4)
|
193 |
+
while golden_label < 0:
|
194 |
+
golden_label = human_predict + random.randint(-4, 4)
|
195 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Great! π You are close to the answer and better than AI!", user_select))
|
196 |
+
num1 += 1
|
197 |
+
else:
|
198 |
+
chatbot.append(("The correct answer is " + str(golden_label) + ". Sorry... No one gets the correct answer. But nice try! π", user_select))
|
199 |
+
|
200 |
+
# data = pd.DataFrame(
|
201 |
+
# {
|
202 |
+
# "Role": ["AI π€", "HUMAN π¨π©"],
|
203 |
+
# "Scores": [num2, num1],
|
204 |
+
# }
|
205 |
+
# )
|
206 |
+
# scroe_human = ''' # Human: ''' + str(int(num1))
|
207 |
+
# scroe_robot = ''' # Robot: ''' + str(int(num2))
|
208 |
+
tot_scores = ''' ### <p style="text-align: center;"> Machine   ''' + str(int(num2)) + '''   VS   ''' + str(int(num1)) + '''   Human </p>'''
|
209 |
+
|
210 |
+
|
211 |
+
num_tmp = max(num1, num2)
|
212 |
+
y_lim_upper = (int((num_tmp + 3)/10)+1) * 10
|
213 |
+
# figure = gr.BarPlot.update(
|
214 |
+
# data,
|
215 |
+
# x="Role",
|
216 |
+
# y="Scores",
|
217 |
+
# color="Role",
|
218 |
+
# vertical=False,
|
219 |
+
# y_lim=[0,y_lim_upper],
|
220 |
+
# color_legend_position='none',
|
221 |
+
# height=250,
|
222 |
+
# width=500,
|
223 |
+
# show_label=False,
|
224 |
+
# container=False,
|
225 |
+
# )
|
226 |
+
# tooltip=["Role", "Scores"],
|
227 |
+
return ai_predict, chatbot, num1, num2, tot_scores
|
228 |
+
|
229 |
+
def interpre3(lang_selected, num_selected):
|
230 |
+
if lang_selected in ['en']:
|
231 |
+
fname = 'data1_en.txt'
|
232 |
+
else:
|
233 |
+
fname = 'data1_nl_10.txt'
|
234 |
+
with open(fname) as f:
|
235 |
+
content = f.readlines()
|
236 |
+
text = eval(content[int(num_selected*2)])
|
237 |
+
interpretation = eval(content[int(num_selected*2+1)])
|
238 |
+
|
239 |
+
print(interpretation)
|
240 |
+
|
241 |
+
res = {"original": text['text'], "interpretation": interpretation}
|
242 |
+
# pos = []
|
243 |
+
# neg = []
|
244 |
+
# res = []
|
245 |
+
# for i in interpretation:
|
246 |
+
# if i[1] > 0:
|
247 |
+
# pos.append(i[1])
|
248 |
+
# elif i[1] < 0:
|
249 |
+
# neg.append(i[1])
|
250 |
+
# else:
|
251 |
+
# continue
|
252 |
+
# median_pos = np.median(pos)
|
253 |
+
# median_neg = np.median(neg)
|
254 |
+
|
255 |
+
|
256 |
+
# res.append(("P", "+"))
|
257 |
+
# res.append(("/", None))
|
258 |
+
# res.append(("N", "-"))
|
259 |
+
# res.append(("Review:", None))
|
260 |
+
# for i in interpretation:
|
261 |
+
# if i[1] > median_pos:
|
262 |
+
# res.append((i[0], "+"))
|
263 |
+
# elif i[1] < median_neg:
|
264 |
+
# res.append((i[0], "-"))
|
265 |
+
# else:
|
266 |
+
# res.append((i[0], None))
|
267 |
+
return res
|
268 |
+
|
269 |
+
|
270 |
+
def func3_written(text_written, human_predict, lang_written):
|
271 |
+
chatbot = []
|
272 |
+
# num1: Human score; num2: AI score
|
273 |
+
|
274 |
+
'''
|
275 |
+
# (START) API version
|
276 |
|
277 |
+
API_URL = "https://api-inference.huggingface.co/models/nlptown/bert-base-multilingual-uncased-sentiment"
|
278 |
+
# API_URL = "https://api-inference.huggingface.co/models/cmarkea/distilcamembert-base-sentiment"
|
279 |
+
headers = {"Authorization": "Bearer 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"}
|
280 |
+
|
281 |
+
response = requests.post(API_URL, headers=headers, json=text_written)
|
282 |
output = response.json()
|
283 |
+
|
284 |
+
# result = dict()
|
285 |
+
star2num = {
|
286 |
+
"5 stars": 100,
|
287 |
+
"4 stars": 75,
|
288 |
+
"3 stars": 50,
|
289 |
+
"2 stars": 25,
|
290 |
+
"1 star": 0,
|
291 |
+
}
|
292 |
+
|
293 |
+
out = output[0][0]
|
294 |
+
# (END) API version
|
295 |
+
'''
|
296 |
+
|
297 |
+
# (START) off-the-shelf version
|
298 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
299 |
+
from transformers import pipeline
|
300 |
+
|
301 |
+
|
302 |
+
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
303 |
+
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
304 |
+
|
305 |
+
classifier = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
306 |
+
|
307 |
+
output = classifier([text_written])
|
308 |
+
|
309 |
+
star2num = {
|
310 |
+
"5 stars": 100,
|
311 |
+
"4 stars": 75,
|
312 |
+
"3 stars": 50,
|
313 |
+
"2 stars": 25,
|
314 |
+
"1 star": 0,
|
315 |
+
}
|
316 |
+
print(output)
|
317 |
+
out = output[0]
|
318 |
+
# (END) off-the-shelf version
|
319 |
+
|
320 |
+
|
321 |
+
ai_predict = star2num[out['label']]
|
322 |
+
# result[label] = out['score']
|
323 |
+
|
324 |
+
if abs(ai_predict - human_predict) <= 12.5:
|
325 |
+
chatbot.append(("AI gives it a close score! π", "β¬
οΈ Feel free to try another one! β¬
οΈ"))
|
326 |
+
else:
|
327 |
+
ai_predict += random.randint(-2, 2)
|
328 |
+
while ai_predict > 100 or ai_predict < 0 or ai_predict % 25 == 0:
|
329 |
+
ai_predict += random.randint(-2, 2)
|
330 |
+
chatbot.append(("AI thinks in a different way from human. π", "β¬
οΈ Feel free to try another one! β¬
οΈ"))
|
331 |
+
|
332 |
+
|
333 |
+
import shap
|
334 |
+
|
335 |
+
# sentiment_classifier = pipeline("text-classification", return_all_scores=True)
|
336 |
+
if lang_written == "Dutch":
|
337 |
+
sentiment_classifier = pipeline("text-classification", model='DTAI-KULeuven/robbert-v2-dutch-sentiment', return_all_scores=True)
|
338 |
+
else:
|
339 |
+
sentiment_classifier = pipeline("text-classification", model='distilbert-base-uncased-finetuned-sst-2-english', return_all_scores=True)
|
340 |
+
|
341 |
+
explainer = shap.Explainer(sentiment_classifier)
|
342 |
+
|
343 |
+
shap_values = explainer([text_written])
|
344 |
+
interpretation = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
345 |
+
|
346 |
+
res = {"original": text_written, "interpretation": interpretation}
|
347 |
+
print(res)
|
348 |
+
|
349 |
+
return res, ai_predict, chatbot
|