Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,179 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -26,6 +194,8 @@ def respond(
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
|
|
|
|
29 |
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
@@ -35,29 +205,13 @@ def respond(
|
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from langchain_openai import ChatOpenAI
|
5 |
+
from crewai_tools import PDFSearchTool
|
6 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
7 |
+
from crewai_tools import tool
|
8 |
+
from crewai import Crew, Task, Agent
|
9 |
+
from google.colab import userdata
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
|
12 |
+
os.environ['GROQ_API_KEY'] = userdata.get('GROQ_API_KEY')
|
13 |
+
os.environ['TAVILY_API_KEY'] = userdata.get('TAVILY_API_KEY')
|
14 |
|
|
|
|
|
|
|
15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
16 |
|
17 |
+
llm = ChatOpenAI(
|
18 |
+
openai_api_base="https://api.groq.com/openai/v1",
|
19 |
+
openai_api_key=os.environ['GROQ_API_KEY'],
|
20 |
+
model_name="llama3-70b-8192",
|
21 |
+
temperature=0.1,
|
22 |
+
max_tokens=1000
|
23 |
+
)
|
24 |
+
|
25 |
+
rag_tool = PDFSearchTool(pdf='finance.pdf',
|
26 |
+
config=dict(
|
27 |
+
llm=dict(
|
28 |
+
provider="groq",
|
29 |
+
config=dict(
|
30 |
+
model="llama3-8b-8192",
|
31 |
+
),
|
32 |
+
),
|
33 |
+
embedder=dict(
|
34 |
+
provider="huggingface",
|
35 |
+
config=dict(
|
36 |
+
model="BAAI/bge-small-en-v1.5",
|
37 |
+
),
|
38 |
+
),
|
39 |
+
)
|
40 |
+
)
|
41 |
+
|
42 |
+
web_search_tool = TavilySearchResults(k=3)
|
43 |
+
|
44 |
+
@tool
|
45 |
+
def router_tool(question):
|
46 |
+
"""Router Function"""
|
47 |
+
return 'web_search'
|
48 |
+
|
49 |
+
Router_Agent = Agent(
|
50 |
+
role='Router',
|
51 |
+
goal='Route user question to a vectorstore or web search',
|
52 |
+
backstory=(
|
53 |
+
"You are an expert at routing a user question to a vectorstore or web search."
|
54 |
+
"Use the vectorstore for questions on concept related to Retrieval-Augmented Generation."
|
55 |
+
"You do not need to be stringent with the keywords in the question related to these topics. Otherwise, use web-search."
|
56 |
+
),
|
57 |
+
verbose=True,
|
58 |
+
allow_delegation=False,
|
59 |
+
llm=llm,
|
60 |
+
)
|
61 |
+
|
62 |
+
Retriever_Agent = Agent(
|
63 |
+
role="Retriever",
|
64 |
+
goal="Use the information retrieved from the vectorstore to answer the question",
|
65 |
+
backstory=(
|
66 |
+
"You are an assistant for question-answering tasks."
|
67 |
+
"Use the information present in the retrieved context to answer the question."
|
68 |
+
"You have to provide a clear concise answer."
|
69 |
+
),
|
70 |
+
verbose=True,
|
71 |
+
allow_delegation=False,
|
72 |
+
llm=llm,
|
73 |
+
)
|
74 |
+
|
75 |
+
Grader_agent = Agent(
|
76 |
+
role='Answer Grader',
|
77 |
+
goal='Filter out erroneous retrievals',
|
78 |
+
backstory=(
|
79 |
+
"You are a grader assessing relevance of a retrieved document to a user question."
|
80 |
+
"If the document contains keywords related to the user question, grade it as relevant."
|
81 |
+
"It does not need to be a stringent test.You have to make sure that the answer is relevant to the question."
|
82 |
+
),
|
83 |
+
verbose=True,
|
84 |
+
allow_delegation=False,
|
85 |
+
llm=llm,
|
86 |
+
)
|
87 |
+
|
88 |
+
hallucination_grader = Agent(
|
89 |
+
role="Hallucination Grader",
|
90 |
+
goal="Filter out hallucination",
|
91 |
+
backstory=(
|
92 |
+
"You are a hallucination grader assessing whether an answer is grounded in / supported by a set of facts."
|
93 |
+
"Make sure you meticulously review the answer and check if the response provided is in alignment with the question asked"
|
94 |
+
),
|
95 |
+
verbose=True,
|
96 |
+
allow_delegation=False,
|
97 |
+
llm=llm,
|
98 |
+
)
|
99 |
+
|
100 |
+
answer_grader = Agent(
|
101 |
+
role="Answer Grader",
|
102 |
+
goal="Filter out hallucination from the answer.",
|
103 |
+
backstory=(
|
104 |
+
"You are a grader assessing whether an answer is useful to resolve a question."
|
105 |
+
"Make sure you meticulously review the answer and check if it makes sense for the question asked"
|
106 |
+
"If the answer is relevant generate a clear and concise response."
|
107 |
+
"If the answer generated is not relevant then perform a websearch using 'web_search_tool'"
|
108 |
+
),
|
109 |
+
verbose=True,
|
110 |
+
allow_delegation=False,
|
111 |
+
llm=llm,
|
112 |
+
)
|
113 |
+
|
114 |
+
router_task = Task(
|
115 |
+
description=("Analyse the keywords in the question {question}"
|
116 |
+
"Based on the keywords decide whether it is eligible for a vectorstore search or a web search."
|
117 |
+
"Return a single word 'vectorstore' if it is eligible for vectorstore search."
|
118 |
+
"Return a single word 'websearch' if it is eligible for web search."
|
119 |
+
"Do not provide any other preamble or explanation."
|
120 |
+
),
|
121 |
+
expected_output=("Give a binary choice 'websearch' or 'vectorstore' based on the question"
|
122 |
+
"Do not provide any other preamble or explanation."),
|
123 |
+
agent=Router_Agent,
|
124 |
+
tools=[router_tool],
|
125 |
+
)
|
126 |
+
|
127 |
+
retriever_task = Task(
|
128 |
+
description=("Based on the response from the router task extract information for the question {question} with the help of the respective tool."
|
129 |
+
"Use the web_search_tool to retrieve information from the web in case the router task output is 'websearch'."
|
130 |
+
"Use the rag_tool to retrieve information from the vectorstore in case the router task output is 'vectorstore'."
|
131 |
+
),
|
132 |
+
expected_output=("You should analyse the output of the 'router_task'"
|
133 |
+
"If the response is 'websearch' then use the web_search_tool to retrieve information from the web."
|
134 |
+
"If the response is 'vectorstore' then use the rag_tool to retrieve information from the vectorstore."
|
135 |
+
"Return a clear and concise text as response."),
|
136 |
+
agent=Retriever_Agent,
|
137 |
+
context=[router_task],
|
138 |
+
)
|
139 |
+
|
140 |
+
grader_task = Task(
|
141 |
+
description=("Based on the response from the retriever task for the question {question} evaluate whether the retrieved content is relevant to the question."
|
142 |
+
),
|
143 |
+
expected_output=("Binary score 'yes' or 'no' score to indicate whether the document is relevant to the question"
|
144 |
+
"You must answer 'yes' if the response from the 'retriever_task' is in alignment with the question asked."
|
145 |
+
"You must answer 'no' if the response from the 'retriever_task' is not in alignment with the question asked."
|
146 |
+
"Do not provide any preamble or explanations except for 'yes' or 'no'."),
|
147 |
+
agent=Grader_agent,
|
148 |
+
context=[retriever_task],
|
149 |
+
)
|
150 |
+
|
151 |
+
hallucination_task = Task(
|
152 |
+
description=("Based on the response from the grader task for the question {question} evaluate whether the answer is grounded in / supported by a set of facts."),
|
153 |
+
expected_output=("Binary score 'yes' or 'no' score to indicate whether the answer is sync with the question asked"
|
154 |
+
"Respond 'yes' if the answer is useful and contains fact about the question asked."
|
155 |
+
"Respond 'no' if the answer is not useful and does not contains fact about the question asked."
|
156 |
+
"Do not provide any preamble or explanations except for 'yes' or 'no'."),
|
157 |
+
agent=hallucination_grader,
|
158 |
+
context=[grader_task],
|
159 |
+
)
|
160 |
+
|
161 |
+
answer_task = Task(
|
162 |
+
description=("Based on the response from the hallucination task for the question {question} evaluate whether the answer is useful to resolve the question."
|
163 |
+
"If the answer is 'yes' return a clear and concise answer."
|
164 |
+
"If the answer is 'no' then perform a 'websearch' and return the response"),
|
165 |
+
expected_output=("Return a clear and concise response if the response from 'hallucination_task' is 'yes'."
|
166 |
+
"Perform a web search using 'web_search_tool' and return a clear and concise response only if the response from 'hallucination_task' is 'no'."
|
167 |
+
"Otherwise respond as 'Sorry! unable to find a valid response'."),
|
168 |
+
context=[hallucination_task],
|
169 |
+
agent=answer_grader,
|
170 |
+
)
|
171 |
+
|
172 |
+
rag_crew = Crew(
|
173 |
+
agents=[Router_Agent, Retriever_Agent, Grader_agent, hallucination_grader, answer_grader],
|
174 |
+
tasks=[router_task, retriever_task, grader_task, hallucination_task, answer_task],
|
175 |
+
verbose=True,
|
176 |
+
)
|
177 |
|
178 |
def respond(
|
179 |
message,
|
|
|
194 |
messages.append({"role": "user", "content": message})
|
195 |
|
196 |
response = ""
|
197 |
+
inputs = {"question": message}
|
198 |
+
result = rag_crew.kickoff(inputs=inputs)
|
199 |
|
200 |
for message in client.chat_completion(
|
201 |
messages,
|
|
|
205 |
top_p=top_p,
|
206 |
):
|
207 |
token = message.choices[0].delta.content
|
|
|
208 |
response += token
|
209 |
yield response
|
210 |
|
|
|
|
|
|
|
211 |
demo = gr.ChatInterface(
|
212 |
respond,
|
213 |
additional_inputs=[
|
214 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
215 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
216 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
217 |
+
gr.S
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|