Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import gdown | |
import os | |
import pandas as pd | |
excel_file_path = 'medical_data.csv' | |
try: | |
medical_df = pd.read_csv(excel_file_path, encoding='utf-8') | |
except UnicodeDecodeError: | |
medical_df = pd.read_csv(excel_file_path, encoding='latin1') | |
# TF-IDF Vectorization | |
vectorizer = TfidfVectorizer(stop_words='english') | |
X_tfidf = vectorizer.fit_transform(medical_df['Questions']) | |
tokenizer = AutoTokenizer.from_pretrained("Josephgflowers/TinyLlama-3T-Cinder-v1.3") | |
model = AutoModelForCausalLM.from_pretrained("Josephgflowers/TinyLlama-3T-Cinder-v1.3") | |
# Load pre-trained Sentence Transformer model | |
sbert_model_name = "paraphrase-MiniLM-L6-v2" | |
sbert_model = SentenceTransformer(sbert_model_name) | |
# Function to answer medical questions using a combination of TF-IDF, LLM, and semantic similarity | |
def get_medical_response(question, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df): | |
# TF-IDF Cosine Similarity | |
question_vector = vectorizer.transform([question]) | |
tfidf_similarities = cosine_similarity(question_vector, X_tfidf).flatten() | |
# Find the most similar question using semantic similarity | |
question_embedding = sbert_model.encode(question, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(question_embedding, sbert_model.encode(medical_df['Questions'].tolist(), convert_to_tensor=True)).flatten() | |
max_sim_index = similarities.argmax().item() | |
# LLM response generation | |
input_text = "DiBot: " + medical_df.iloc[max_sim_index]['Questions'] | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
attention_mask = torch.ones(input_ids.shape, dtype=torch.long) | |
pad_token_id = tokenizer.eos_token_id | |
lm_output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, attention_mask=attention_mask, pad_token_id=pad_token_id) | |
lm_generated_response = tokenizer.decode(lm_output[0], skip_special_tokens=True) | |
# Compare similarities and choose the best response | |
if tfidf_similarities.max() > 0.5: | |
tfidf_index = tfidf_similarities.argmax() | |
return medical_df.iloc[tfidf_index]['Answers'] | |
else: | |
return lm_generated_response | |
# Custom CSS to enhance the UI | |
st.markdown(""" | |
<style> | |
.main { | |
background-color: ##131313; | |
padding: 2rem; | |
border-radius: 10px; | |
} | |
.stTextInput > div > div > input { | |
border: 2px solid #ccc; | |
border-radius: 10px; | |
padding: 10px; | |
width: 100%; | |
} | |
.stButton > button { | |
background-color: #4CAF50; | |
color: white; | |
border: none; | |
border-radius: 10px; | |
padding: 10px 20px; | |
cursor: pointer; | |
} | |
.stButton > button:hover { | |
background-color: #45a049; | |
} | |
.stTextArea > div > div > textarea { | |
border: 2px solid #ccc; | |
border-radius: 10px; | |
padding: 10px; | |
width: 100%; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Streamlit app layout | |
st.title("π€ DiBot - Your Medical Query Assistant") | |
st.write("Ask me any medical question, and I'll do my best to provide an accurate response.") | |
st.subheader("Enter your question below:") | |
user_input = st.text_input("Your question:", "") | |
if user_input.lower() == "exit": | |
st.stop() | |
if user_input: | |
response = get_medical_response(user_input, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df) | |
st.subheader("Bot's Response:") | |
st.text_area("", response, height=200) | |