import streamlit as st import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from transformers import GPT2Tokenizer, GPT2LMHeadModel from sentence_transformers import SentenceTransformer, util from transformers import AutoTokenizer, AutoModelForCausalLM import torch import gdown import os import pandas as pd excel_file_path = 'medical_data.csv' try: medical_df = pd.read_csv(excel_file_path, encoding='utf-8') except UnicodeDecodeError: medical_df = pd.read_csv(excel_file_path, encoding='latin1') # TF-IDF Vectorization vectorizer = TfidfVectorizer(stop_words='english') X_tfidf = vectorizer.fit_transform(medical_df['Questions']) tokenizer = AutoTokenizer.from_pretrained("Josephgflowers/TinyLlama-3T-Cinder-v1.3") model = AutoModelForCausalLM.from_pretrained("Josephgflowers/TinyLlama-3T-Cinder-v1.3") # Load pre-trained Sentence Transformer model sbert_model_name = "paraphrase-MiniLM-L6-v2" sbert_model = SentenceTransformer(sbert_model_name) # Function to answer medical questions using a combination of TF-IDF, LLM, and semantic similarity def get_medical_response(question, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df): # TF-IDF Cosine Similarity question_vector = vectorizer.transform([question]) tfidf_similarities = cosine_similarity(question_vector, X_tfidf).flatten() # Find the most similar question using semantic similarity question_embedding = sbert_model.encode(question, convert_to_tensor=True) similarities = util.pytorch_cos_sim(question_embedding, sbert_model.encode(medical_df['Questions'].tolist(), convert_to_tensor=True)).flatten() max_sim_index = similarities.argmax().item() # LLM response generation input_text = "DiBot: " + medical_df.iloc[max_sim_index]['Questions'] input_ids = tokenizer.encode(input_text, return_tensors="pt") attention_mask = torch.ones(input_ids.shape, dtype=torch.long) pad_token_id = tokenizer.eos_token_id lm_output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, attention_mask=attention_mask, pad_token_id=pad_token_id) lm_generated_response = tokenizer.decode(lm_output[0], skip_special_tokens=True) # Compare similarities and choose the best response if tfidf_similarities.max() > 0.5: tfidf_index = tfidf_similarities.argmax() return medical_df.iloc[tfidf_index]['Answers'] else: return lm_generated_response # Custom CSS to enhance the UI st.markdown(""" """, unsafe_allow_html=True) # Streamlit app layout st.title("🤖 DiBot - Your Medical Query Assistant") st.write("Ask me any medical question, and I'll do my best to provide an accurate response.") st.subheader("Enter your question below:") user_input = st.text_input("Your question:", "") if user_input.lower() == "exit": st.stop() if user_input: response = get_medical_response(user_input, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df) st.subheader("Bot's Response:") st.text_area("", response, height=200)