Spaces:
Sleeping
Sleeping
HUANG-Stephanie
commited on
Commit
•
4390904
1
Parent(s):
44cf120
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.39.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: cvquest-colpali
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 4.39.0
|
|
|
|
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from pdf2image import convert_from_path
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from tqdm import tqdm
|
10 |
+
from transformers import AutoProcessor
|
11 |
+
|
12 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
13 |
+
|
14 |
+
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
15 |
+
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
16 |
+
from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
|
17 |
+
|
18 |
+
def search(query: str, ds, images):
|
19 |
+
qs = []
|
20 |
+
with torch.no_grad():
|
21 |
+
batch_query = process_queries(processor, [query], mock_image)
|
22 |
+
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
23 |
+
embeddings_query = model(**batch_query)
|
24 |
+
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
25 |
+
|
26 |
+
# run evaluation
|
27 |
+
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
28 |
+
scores = retriever_evaluator.evaluate(qs, ds)
|
29 |
+
best_page = int(scores.argmax(axis=1).item())
|
30 |
+
return f"The most relevant page is {best_page}", images[best_page]
|
31 |
+
|
32 |
+
|
33 |
+
def index(file, ds):
|
34 |
+
"""Example script to run inference with ColPali"""
|
35 |
+
images = []
|
36 |
+
for f in file:
|
37 |
+
images.extend(convert_from_path(f))
|
38 |
+
|
39 |
+
# run inference - docs
|
40 |
+
dataloader = DataLoader(
|
41 |
+
images,
|
42 |
+
batch_size=4,
|
43 |
+
shuffle=False,
|
44 |
+
collate_fn=lambda x: process_images(processor, x),
|
45 |
+
)
|
46 |
+
for batch_doc in tqdm(dataloader):
|
47 |
+
with torch.no_grad():
|
48 |
+
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
49 |
+
embeddings_doc = model(**batch_doc)
|
50 |
+
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
51 |
+
return f"Uploaded and converted {len(images)} pages", ds, images
|
52 |
+
|
53 |
+
COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"]
|
54 |
+
# Load model
|
55 |
+
model_name = "vidore/colpali"
|
56 |
+
token = os.environ.get("HF_TOKEN")
|
57 |
+
model = ColPali.from_pretrained(
|
58 |
+
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token=token
|
59 |
+
).eval()
|
60 |
+
model.load_adapter(model_name)
|
61 |
+
processor = AutoProcessor.from_pretrained(model_name, token=token)
|
62 |
+
device = model.device
|
63 |
+
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
64 |
+
|
65 |
+
with gr.Blocks() as demo:
|
66 |
+
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚🔍")
|
67 |
+
gr.Markdown("## 1️⃣ Upload PDFs")
|
68 |
+
file = gr.File(file_types=["pdf"], file_count="multiple")
|
69 |
+
|
70 |
+
gr.Markdown("## 2️⃣ Convert the PDFs and upload")
|
71 |
+
convert_button = gr.Button("🔄 Convert and upload")
|
72 |
+
message = gr.Textbox("Files not yet uploaded")
|
73 |
+
embeds = gr.State(value=[])
|
74 |
+
imgs = gr.State(value=[])
|
75 |
+
|
76 |
+
# Define the actions
|
77 |
+
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
78 |
+
|
79 |
+
gr.Markdown("## 3️⃣ Search")
|
80 |
+
query = gr.Textbox(placeholder="Enter your query here")
|
81 |
+
search_button = gr.Button("🔍 Search")
|
82 |
+
message2 = gr.Textbox("Query not yet set")
|
83 |
+
output_img = gr.Image()
|
84 |
+
|
85 |
+
search_button.click(search, inputs=[query, embeds, imgs], outputs=[message2, output_img])
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
demo.queue(max_size=10).launch(debug=True, share=True)
|