import io import os import sys from fastapi import FastAPI, File, UploadFile import gradio as gr import requests from typing import List import torch from pdf2image import convert_from_path from PIL import Image from torch.utils.data import DataLoader from transformers import AutoProcessor sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main'))) from colpali_engine.models.paligemma_colbert_architecture import ColPali from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator from colpali_engine.utils.colpali_processing_utils import ( process_images, process_queries, ) app = FastAPI() # Load model model_name = "vidore/colpali" token = os.environ.get("HF_TOKEN") model = ColPali.from_pretrained( "google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token = token).eval() model.load_adapter(model_name) processor = AutoProcessor.from_pretrained(model_name, token = token) device = "cuda:0" if torch.cuda.is_available() else "cpu" if device != model.device: model.to(device) mock_image = Image.new("RGB", (448, 448), (255, 255, 255)) # In-memory storage ds = [] images = [] @app.post("/index") async def index(files: List[UploadFile] = File(...)): global ds, images images = [] ds = [] for file in files: content = await file.read() pdf_image_list = convert_from_path(io.BytesIO(content)) images.extend(pdf_image_list) dataloader = DataLoader( images, batch_size=4, shuffle=False, collate_fn=lambda x: process_images(processor, x), ) for batch_doc in dataloader: with torch.no_grad(): batch_doc = {k: v.to(device) for k, v in batch_doc.items()} embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) return {"message": f"Uploaded and converted {len(images)} pages"} @app.post("/search") async def search(query: str, k: int): qs = [] with torch.no_grad(): batch_query = process_queries(processor, [query], mock_image) batch_query = {k: v.to(device) for k, v in batch_query.items()} embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) retriever_evaluator = CustomEvaluator(is_multi_vector=True) scores = retriever_evaluator.evaluate(qs, ds) top_k_indices = scores.argsort(axis=1)[0][-k:][::-1] results = [{"page": idx, "image": "image_placeholder"} for idx in top_k_indices] return {"results": results}