File size: 9,181 Bytes
d1083aa 830f83c d1083aa 830f83c d1083aa 830f83c d1083aa 58a00fc d1083aa 830f83c d1083aa 830f83c d1083aa 830f83c d1083aa 830f83c d1083aa 830f83c d1083aa 830f83c d1083aa 293d766 d1083aa 830f83c d1083aa 830f83c d1083aa 293d766 d1083aa 830f83c d1083aa 830f83c d1083aa 830f83c d1083aa a3597eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
from PIL import Image, ImageDraw
import torch
from transformers import OwlViTProcessor, OwlViTForObjectDetection, OwlViTModel, OwlViTImageProcessor
from transformers.image_transforms import center_to_corners_format
from transformers.models.owlvit.modeling_owlvit import box_iou
from functools import partial
import numpy as np
# from utils import iou
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
from transformers.models.owlvit.modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTClassPredictionHead
def classpredictionhead_box_forward(
self,
image_embeds,
query_indice,
query_mask,
):
image_class_embeds = self.dense0(image_embeds)
# Normalize image and text features
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
query_embeds = image_class_embeds[0, query_indice].unsqueeze(0).unsqueeze(0)
# query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
# Get class predictions
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds)
# Apply a learnable shift and scale to logits
logit_shift = self.logit_shift(image_embeds)
logit_scale = self.logit_scale(image_embeds)
logit_scale = self.elu(logit_scale) + 1
pred_logits = (pred_logits + logit_shift) * logit_scale
if query_mask is not None:
if query_mask.ndim > 1:
query_mask = torch.unsqueeze(query_mask, dim=-2)
pred_logits = pred_logits.to(torch.float64)
pred_logits = torch.where(query_mask == 0, -1e6, pred_logits)
pred_logits = pred_logits.to(torch.float32)
return (pred_logits, image_class_embeds)
def class_predictor(
self,
image_feats,
query_indice=None,
query_mask=None,
):
(pred_logits, image_class_embeds) = self.class_head.classpredictionhead_box_forward(image_feats, query_indice, query_mask)
return (pred_logits, image_class_embeds)
def get_max_iou_indice(target_pred_boxes, query_box, target_sizes):
boxes = center_to_corners_format(target_pred_boxes)
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
iou, _ = box_iou(boxes.squeeze(0), query_box)
return iou.argmax()
def box_guided_detection(
self: OwlViTForObjectDetection,
pixel_values,
query_box=None,
target_sizes=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Compute feature maps for the input and query images
# query_feature_map = self.image_embedder(pixel_values=query_pixel_values)[0]
feature_map, vision_outputs = self.image_embedder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
# batch_size, num_patches, num_patches, hidden_dim = query_feature_map.shape
# query_image_feats = torch.reshape(query_feature_map, (batch_size, num_patches * num_patches, hidden_dim))
# # Get top class embedding and best box index for each query image in batch
# query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(query_image_feats, query_feature_map)
# Predict object boxes
target_pred_boxes = self.box_predictor(image_feats, feature_map)
# Get MAX IOU box corresponding embedding
query_indice = get_max_iou_indice(target_pred_boxes, query_box, target_sizes)
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_indice=query_indice)
if not return_dict:
output = (
feature_map,
# query_feature_map,
target_pred_boxes,
# query_pred_boxes,
pred_logits,
class_embeds,
vision_outputs.to_tuple(),
)
output = tuple(x for x in output if x is not None)
return output
return OwlViTImageGuidedObjectDetectionOutput(
image_embeds=feature_map,
# query_image_embeds=query_feature_map,
target_pred_boxes=target_pred_boxes,
# query_pred_boxes=query_pred_boxes,
logits=pred_logits,
class_embeds=class_embeds,
text_model_output=None,
vision_model_output=vision_outputs,
)
model.box_guided_detection = partial(box_guided_detection, model)
model.class_predictor = partial(class_predictor, model)
model.class_head.classpredictionhead_box_forward = partial(classpredictionhead_box_forward, model.class_head)
outputs = None
def prepare_embedds(xmin, ymin, xmax, ymax, image):
box = (int(xmin), int(ymin), int(xmax), int(ymax))
return (image, [(box, "manul")])
def manul_box_change(xmin, ymin, xmax, ymax, image):
box = (int(xmin), int(ymin), int(xmax), int(ymax))
return (image["image"], [(box, "manul")])
def threshold_change(xmin, ymin, xmax, ymax, image, threshold, nms):
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
global outputs
target_sizes = torch.Tensor([image["image"].size[::-1]])
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
boxes = results[0]['boxes'].type(torch.int64).tolist()
scores = results[0]['scores'].tolist()
labels = list(zip(boxes, scores))
cnt = len(boxes)
return (image["image"], labels), cnt
def one_shot_detect(xmin, ymin, xmax, ymax, image, threshold, nms):
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
global outputs
target_sizes = torch.Tensor([image["image"].size[::-1]])
inputs = processor(images=image["image"].convert("RGB"), return_tensors="pt")
outputs = model.box_guided_detection(**inputs, query_box=torch.Tensor([manul_box]), target_sizes=target_sizes)
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
boxes = results[0]['boxes'].type(torch.int64).tolist()
scores = results[0]['scores'].tolist()
labels = list(zip(boxes, scores))
cnt = len(boxes)
return (image["image"], labels), cnt
def save_embedding(exam):
print(exam)
global outputs
embedding = outputs["class_embeds"][0, outputs["logits"].argmax()]
return embedding.detach().numpy()
def sketch2box(sketch_box):
mask = sketch_box["mask"].convert("L")
mask = np.array(mask)
masked_index = np.where(mask == 255)
if len(masked_index[0]) == 0:
return (sketch_box["image"], []), -1, -1, -1, -1
xmin, ymin, xmax, ymax = masked_index[1].min(), masked_index[0].min(), masked_index[1].max(), masked_index[0].max()
box = (xmin, ymin, xmax, ymax)
return (sketch_box["image"], [(box, "manual")]), xmin, ymin, xmax, ymax
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
sketch_box = gr.Image(type="pil", source="upload", tool="sketch")
box_preview = gr.AnnotatedImage(type="pil", interactive=False, height=256)
threshold = gr.Number(0.95, label="threshold", step=0.01)
nms = gr.Number(0.3, label="nms", step=0.01)
cnt = gr.Number(0, label="count", interactive=False)
with gr.Column():
annotatedimage = gr.AnnotatedImage()
with gr.Row():
xmin = gr.Number(-1, label="xmin")
ymin = gr.Number(-1, label="ymin")
xmax = gr.Number(-1, label="xmax")
ymax = gr.Number(-1, label="ymax")
with gr.Row():
run_button = gr.Button(variant="primary")
# save_button = gr.Button("Save", variant="secondary")
sketch_box.edit(sketch2box, [sketch_box], [box_preview, xmin, ymin, xmax, ymax])
xmin.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
ymin.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
xmax.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
ymax.change(manul_box_change, [xmin, ymin, xmax, ymax, sketch_box], [box_preview])
threshold.change(threshold_change, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt])
nms.change(threshold_change, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt])
run_button.click(one_shot_detect, [xmin, ymin, xmax, ymax, sketch_box, threshold, nms], [annotatedimage, cnt])
demo.launch() |