Spaces:
Sleeping
Sleeping
Harshavarma04
commited on
Commit
•
b836427
1
Parent(s):
bc22532
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize sentiment analysis pipeline
|
5 |
+
sentiment_pipeline = pipeline("sentiment-analysis")
|
6 |
+
|
7 |
+
# Use a sarcasm detection model
|
8 |
+
sarcasm_model_name = "mrm8488/t5-base-finetuned-sarcasm-twitter" # Correct model name for sarcasm detection
|
9 |
+
|
10 |
+
# Create the sarcasm detection pipeline
|
11 |
+
sarcasm_pipeline = pipeline("text2text-generation", model=sarcasm_model_name)
|
12 |
+
|
13 |
+
def classify_sentence(sentence):
|
14 |
+
# Detect sarcasm
|
15 |
+
sarcasm_result = sarcasm_pipeline(sentence)[0]['generated_text']
|
16 |
+
is_sarcastic = sarcasm_result.strip().lower() == 'true'
|
17 |
+
|
18 |
+
# Detect sentiment
|
19 |
+
sentiment_result = sentiment_pipeline(sentence)[0]
|
20 |
+
sentiment_label = sentiment_result['label']
|
21 |
+
sentiment_score = sentiment_result['score']
|
22 |
+
|
23 |
+
# Determine sentiment
|
24 |
+
if sentiment_label == "NEGATIVE":
|
25 |
+
sentiment = "negative"
|
26 |
+
elif sentiment_label == "POSITIVE":
|
27 |
+
sentiment = "positive"
|
28 |
+
else:
|
29 |
+
sentiment = "neutral"
|
30 |
+
|
31 |
+
# Handle sarcasm
|
32 |
+
if is_sarcastic:
|
33 |
+
sentiment += " (sarcastic)"
|
34 |
+
|
35 |
+
return sentiment
|
36 |
+
|
37 |
+
# Streamlit app
|
38 |
+
st.title("Sentence Analyzer")
|
39 |
+
|
40 |
+
# User input
|
41 |
+
sentence = st.text_input("Enter a sentence:", "")
|
42 |
+
|
43 |
+
if st.button("Analyze"):
|
44 |
+
if sentence:
|
45 |
+
classification = classify_sentence(sentence)
|
46 |
+
st.write(f"Sentence: {sentence}")
|
47 |
+
st.write(f"Classification: {classification}")
|
48 |
+
else:
|
49 |
+
st.write("Please enter a sentence to analyze.")
|
50 |
+
|
51 |
+
# Example sentences
|
52 |
+
st.subheader("Example Sentences")
|
53 |
+
example_sentences = [
|
54 |
+
"they are so beautiful",
|
55 |
+
"This is the best day of my life.",
|
56 |
+
"I'm not happy with your work.",
|
57 |
+
"Yeah,you are not a good person!"
|
58 |
+
]
|
59 |
+
|
60 |
+
if st.button("Analyze Example Sentences"):
|
61 |
+
for sentence in example_sentences:
|
62 |
+
st.write(f"Sentence: {sentence}")
|
63 |
+
st.write(f"Classification: {classify_sentence(sentence)}")
|
64 |
+
st.write()
|