import torch from transformers import pipeline import gradio as gr import os MODEL_NAME = "HarshitJoshi/whisper-small-Hindi" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, device=device, ) def transcribe_speech(filepath): output = pipe( filepath, max_new_tokens=256, generate_kwargs={ "task": "transcribe", "language": "hindi", }, chunk_length_s=10, batch_size=4, ) return output["text"] example_folder = "./examples" demo = gr.Interface( fn=transcribe_speech, inputs=gr.Audio(label="Audio Input", type="filepath"), outputs=gr.Textbox(label="Transcription"), title="Hindi Speech Transcription", description=( "Upload an audio file or record using your microphone to transcribe Hindi speech." ), examples=example_folder, cache_examples=True, allow_flagging="never", ) demo.launch(debug=True)