|
import gradio as gr |
|
from optimum.intel import OVStableDiffusionPipeline |
|
|
|
model_id = "yujiepan/dreamshaper-8-lcm-openvino-w8a8" |
|
pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, device='CPU') |
|
pipeline.sampler = "dpm++2s_a" |
|
num_inference_steps = 28 |
|
|
|
def infer(prompt): |
|
image = pipeline( |
|
prompt=prompt, |
|
guidance_scale=1.0, |
|
num_inference_steps=num_inference_steps, |
|
width=512, |
|
height=512, |
|
num_images_per_prompt=1, |
|
).images[0] |
|
return image |
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("# Demo : yujiepan/dreamshaper-8-lcm-openvino-w8a8 ⚡") |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Examples( |
|
examples=examples, |
|
fn=infer, |
|
inputs=[prompt], |
|
outputs=[result] |
|
) |
|
|
|
run_button.click( |
|
fn=infer, |
|
|
|
inputs=[prompt], |
|
outputs=[result] |
|
) |
|
|
|
demo.queue().launch(share=True) |
|
|