Moving to gradio 4.4.1
Browse files- Token only needed for private.
- Correctly handling private repos, but making the bot the operator for
all public + gated models
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🐶
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.4.1
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -20,39 +20,29 @@ if False and HF_TOKEN:
|
|
20 |
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN)
|
21 |
|
22 |
|
23 |
-
def run(
|
24 |
-
if
|
25 |
return """
|
26 |
### Invalid input 🐞
|
27 |
|
28 |
Please fill a token and model_id.
|
29 |
"""
|
30 |
try:
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
print("is_private", is_private)
|
34 |
|
35 |
commit_info, errors = convert(api=api, model_id=model_id)
|
36 |
print("[commit_info]", commit_info)
|
37 |
|
38 |
-
# save in a (public) dataset:
|
39 |
-
# TODO False because of LFS bug.
|
40 |
-
if False and repo is not None and not is_private:
|
41 |
-
repo.git_pull(rebase=True)
|
42 |
-
print("pulled")
|
43 |
-
with open(DATA_FILE, "a") as csvfile:
|
44 |
-
writer = csv.DictWriter(
|
45 |
-
csvfile, fieldnames=["model_id", "pr_url", "time"]
|
46 |
-
)
|
47 |
-
writer.writerow(
|
48 |
-
{
|
49 |
-
"model_id": model_id,
|
50 |
-
"pr_url": commit_info.pr_url,
|
51 |
-
"time": str(datetime.now()),
|
52 |
-
}
|
53 |
-
)
|
54 |
-
commit_url = repo.push_to_hub()
|
55 |
-
print("[dataset]", commit_url)
|
56 |
|
57 |
string = f"""
|
58 |
### Success 🔥
|
@@ -84,17 +74,29 @@ The steps are the following:
|
|
84 |
⚠️ For now only `pytorch_model.bin` files are supported but we'll extend in the future.
|
85 |
"""
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN)
|
21 |
|
22 |
|
23 |
+
def run(model_id: str, is_private: bool, token: Optional[str] = None) -> str:
|
24 |
+
if model_id == "":
|
25 |
return """
|
26 |
### Invalid input 🐞
|
27 |
|
28 |
Please fill a token and model_id.
|
29 |
"""
|
30 |
try:
|
31 |
+
if is_private:
|
32 |
+
api = HfApi(token=token)
|
33 |
+
else:
|
34 |
+
api = HfApi(token=HF_TOKEN)
|
35 |
+
hf_is_private = api.model_info(repo_id=model_id).private
|
36 |
+
if is_private and not hf_is_private:
|
37 |
+
# This model is NOT private
|
38 |
+
# Change the token so we make the PR on behalf of the bot.
|
39 |
+
api = HfApi(token=HF_TOKEN)
|
40 |
+
|
41 |
print("is_private", is_private)
|
42 |
|
43 |
commit_info, errors = convert(api=api, model_id=model_id)
|
44 |
print("[commit_info]", commit_info)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
string = f"""
|
48 |
### Success 🔥
|
|
|
74 |
⚠️ For now only `pytorch_model.bin` files are supported but we'll extend in the future.
|
75 |
"""
|
76 |
|
77 |
+
title="Convert any model to Safetensors and open a PR"
|
78 |
+
allow_flagging="never"
|
79 |
+
|
80 |
+
def token_text(visible=False):
|
81 |
+
return gr.Text(max_lines=1, label="your_hf_token", visible=visible)
|
82 |
+
|
83 |
+
with gr.Blocks(title=title) as demo:
|
84 |
+
description = gr.Markdown(f"""# {title}""")
|
85 |
+
description = gr.Markdown(DESCRIPTION)
|
86 |
+
|
87 |
+
with gr.Row() as r:
|
88 |
+
with gr.Column() as c:
|
89 |
+
model_id = gr.Text(max_lines=1, label="model_id")
|
90 |
+
is_private = gr.Checkbox(label="Private model")
|
91 |
+
token = token_text()
|
92 |
+
with gr.Row() as c:
|
93 |
+
clean = gr.ClearButton()
|
94 |
+
submit = gr.Button("Submit", variant="primary")
|
95 |
+
|
96 |
+
with gr.Column() as d:
|
97 |
+
output = gr.Markdown()
|
98 |
+
|
99 |
+
is_private.change(lambda s: token_text(s), inputs=is_private, outputs=token)
|
100 |
+
submit.click(run, inputs=[model_id, is_private, token], outputs=output, concurrency_limit=1)
|
101 |
+
|
102 |
+
demo.queue(max_size=10).launch(show_api=True)
|