Spaces:
Runtime error
Runtime error
File size: 7,639 Bytes
796d506 7295302 ad03828 796d506 64e99f5 796d506 7295302 211a715 796d506 7295302 796d506 7295302 796d506 7295302 796d506 9306329 796d506 7295302 796d506 211a715 ad03828 796d506 b323e3d 796d506 64e99f5 6188097 e4c8ce8 6188097 b323e3d 211a715 7295302 205190d b323e3d e4c8ce8 b323e3d 211a715 7295302 796d506 205190d 7295302 b323e3d aa921bb 73a53d1 796d506 ad03828 b323e3d ad03828 64e99f5 ad03828 7295302 ad03828 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import pathlib
import tempfile
from typing import Iterable, List
import gradio as gr
import huggingface_hub
import torch
import yaml
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
from mergekit.config import MergeConfiguration
has_gpu = torch.cuda.is_available()
# Running directly from Python doesn't work well with Gradio+run_process because of:
# Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
# Let's use the CLI instead.
#
# import mergekit.merge
# from mergekit.common import parse_kmb
# from mergekit.options import MergeOptions
#
# merge_options = (
# MergeOptions(
# copy_tokenizer=True,
# cuda=True,
# low_cpu_memory=True,
# write_model_card=True,
# )
# if has_gpu
# else MergeOptions(
# allow_crimes=True,
# out_shard_size=parse_kmb("1B"),
# lazy_unpickle=True,
# write_model_card=True,
# )
# )
cli = "mergekit-yaml config.yaml merge --copy-tokenizer" + (
" --cuda --low-cpu-memory"
if has_gpu
else " --allow-crimes --out-shard-size 1B --lazy-unpickle"
)
## This Space is heavily inspired by LazyMergeKit by Maxime Labonne
## https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb
MARKDOWN_DESCRIPTION = """
# mergekit-gui
The fastest way to perform a model merge π₯
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
"""
MARKDOWN_ARTICLE = """
___
## Merge Configuration
[Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model.
Below are the primary elements of a configuration file:
- `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list.
- `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
- `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
- `base_model`: Specifies the base model used in some merging methods.
- `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
- `dtype`: Specifies the data type used for the merging operation.
- `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
## Merge Methods
A quick overview of the currently supported merge methods:
| Method | `merge_method` value | Multi-Model | Uses base model |
| -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- |
| Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | β
| β |
| SLERP | `slerp` | β | β
|
| [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | β
| β
|
| [TIES](https://arxiv.org/abs/2306.01708) | `ties` | β
| β
|
| [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | β
| β
|
| [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | β
| β
|
| Passthrough | `passthrough` | β | β |
| [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | β
| β
|
"""
examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yml")]
def merge(
yaml_config: str, hf_token: str | None, repo_name: str | None
) -> Iterable[List[Log]]:
if not yaml_config:
raise gr.Error("Empty yaml, pick an example below")
try:
merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
except Exception as e:
raise gr.Error(f"Invalid yaml {e}")
runner = LogsViewRunner()
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdir = pathlib.Path(tmpdirname)
merged_path = tmpdir / "merged"
merged_path.mkdir(parents=True, exist_ok=True)
config_path = merged_path / "config.yaml"
config_path.write_text(yaml_config)
yield runner.log(f"Merge configuration saved in {config_path}")
if token is not None and repo_name == "":
name = "-".join(
model.model.path for model in merge_config.referenced_models()
)
repo_name = f"mergekit-{merge_config.merge_method}-{name}".replace(
"/", "-"
).strip("-")
if len(repo_name) > 50:
repo_name = repo_name[:25] + "-etc-" + repo_name[25:]
runner.log(f"Will save merged in {repo_name} once process is done.")
if token is None:
yield runner.log(
"No token provided, merge will run in dry-run mode (no upload at the end of the process)."
)
yield from runner.run_command(cli.split(), cwd=merged_path)
if runner.exit_code != 0:
yield runner.log(
"Merge failed. Terminating here. No model has been uploaded."
)
return
if hf_token is not None:
def upload_to_repo():
api = huggingface_hub.HfApi(token=hf_token)
print("Creating repo")
repo_url = api.create_repo(repo_name, exist_ok=True)
print(f"Repo created: {repo_url}")
print("Starting upload")
folder_url = api.upload_folder(
repo_id=repo_url.repo_id, folder_path=merged_path / "merge"
)
print(f"Model successfully uploaded to {folder_url}")
yield from runner.run_python(upload_to_repo)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN_DESCRIPTION)
with gr.Row():
filename = gr.Textbox(visible=False, label="filename")
config = gr.Code(language="yaml", lines=10, label="config.yaml")
with gr.Column():
token = gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
placeholder="optional, will not upload merge if empty (dry-run)",
)
repo_name = gr.Textbox(
lines=1,
label="Repo name",
placeholder="optional, will create a random name if empty",
)
button = gr.Button("Merge", variant="primary")
logs = LogsView()
gr.Examples(
examples,
fn=lambda s: (s,),
run_on_click=True,
label="Examples",
inputs=[filename],
outputs=[config],
)
gr.Markdown(MARKDOWN_ARTICLE)
button.click(fn=merge, inputs=[config, token, repo_name], outputs=[logs])
demo.queue(default_concurrency_limit=1).launch()
|