Spaces:
Runtime error
Runtime error
thinh-huynh-re
commited on
Commit
•
1bcf2a0
1
Parent(s):
b47bdbb
Update
Browse files- app.py +20 -20
- capture_picture.py +20 -0
- camera.py → video.py +0 -0
app.py
CHANGED
@@ -50,12 +50,14 @@ def load_model(model_name: str):
|
|
50 |
return feature_extractor, model
|
51 |
|
52 |
|
53 |
-
def read_video(file_path: str) -> np.ndarray:
|
54 |
cap = cv2.VideoCapture(file_path)
|
55 |
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 1000 frames
|
56 |
print("Number of frames", length)
|
57 |
|
58 |
-
indices = sample_frame_indices(
|
|
|
|
|
59 |
|
60 |
frames: List[np.array] = []
|
61 |
for i in indices:
|
@@ -83,8 +85,8 @@ def read_video_decord(file_path: str) -> np.ndarray:
|
|
83 |
return video
|
84 |
|
85 |
|
86 |
-
def inference(file_path: str):
|
87 |
-
video = read_video(file_path)
|
88 |
|
89 |
inputs = feature_extractor(list(video), return_tensors="pt")
|
90 |
|
@@ -111,6 +113,15 @@ def inference(file_path: str):
|
|
111 |
return pd.DataFrame(results, columns=("Label", "Confidence"))
|
112 |
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
st.title("TimeSFormer")
|
115 |
|
116 |
with st.expander("INTRODUCTION"):
|
@@ -135,6 +146,10 @@ model_name = st.selectbox(
|
|
135 |
)
|
136 |
feature_extractor, model = load_model(model_name)
|
137 |
|
|
|
|
|
|
|
|
|
138 |
VIDEO_TMP_PATH = os.path.join("tmp", "tmp.mp4")
|
139 |
uploadedfile = st.file_uploader("Upload file", type=["mp4"])
|
140 |
|
@@ -146,23 +161,8 @@ if uploadedfile is not None:
|
|
146 |
|
147 |
start_time = time.time()
|
148 |
with st.spinner("Processing..."):
|
149 |
-
df = inference(VIDEO_TMP_PATH)
|
150 |
end_time = time.time()
|
151 |
st.info(f"{end_time - start_time} seconds")
|
152 |
st.dataframe(df)
|
153 |
st.video(VIDEO_TMP_PATH)
|
154 |
-
|
155 |
-
img_file_buffer = st.camera_input("Take a picture")
|
156 |
-
|
157 |
-
if img_file_buffer is not None:
|
158 |
-
# To read image file buffer with OpenCV:
|
159 |
-
bytes_data = img_file_buffer.getvalue()
|
160 |
-
cv2_img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)
|
161 |
-
|
162 |
-
# Check the type of cv2_img:
|
163 |
-
# Should output: <class 'numpy.ndarray'>
|
164 |
-
st.write(type(cv2_img))
|
165 |
-
|
166 |
-
# Check the shape of cv2_img:
|
167 |
-
# Should output shape: (height, width, channels)
|
168 |
-
st.write(cv2_img.shape)
|
|
|
50 |
return feature_extractor, model
|
51 |
|
52 |
|
53 |
+
def read_video(file_path: str, frames_per_video: int = 8) -> np.ndarray:
|
54 |
cap = cv2.VideoCapture(file_path)
|
55 |
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 1000 frames
|
56 |
print("Number of frames", length)
|
57 |
|
58 |
+
indices = sample_frame_indices(
|
59 |
+
clip_len=frames_per_video, frame_sample_rate=4, seg_len=length
|
60 |
+
)
|
61 |
|
62 |
frames: List[np.array] = []
|
63 |
for i in indices:
|
|
|
85 |
return video
|
86 |
|
87 |
|
88 |
+
def inference(file_path: str, frames_per_video: int = 8):
|
89 |
+
video = read_video(file_path, frames_per_video)
|
90 |
|
91 |
inputs = feature_extractor(list(video), return_tensors="pt")
|
92 |
|
|
|
113 |
return pd.DataFrame(results, columns=("Label", "Confidence"))
|
114 |
|
115 |
|
116 |
+
def get_frames_per_video(model_name: str) -> int:
|
117 |
+
if "base-finetuned" in model_name:
|
118 |
+
return 8
|
119 |
+
elif "hr-finetuned" in model_name:
|
120 |
+
return 16
|
121 |
+
else:
|
122 |
+
return 96
|
123 |
+
|
124 |
+
|
125 |
st.title("TimeSFormer")
|
126 |
|
127 |
with st.expander("INTRODUCTION"):
|
|
|
146 |
)
|
147 |
feature_extractor, model = load_model(model_name)
|
148 |
|
149 |
+
frames_per_video = get_frames_per_video(model_name)
|
150 |
+
st.info(f"Frames per video: {frames_per_video}")
|
151 |
+
|
152 |
+
|
153 |
VIDEO_TMP_PATH = os.path.join("tmp", "tmp.mp4")
|
154 |
uploadedfile = st.file_uploader("Upload file", type=["mp4"])
|
155 |
|
|
|
161 |
|
162 |
start_time = time.time()
|
163 |
with st.spinner("Processing..."):
|
164 |
+
df = inference(VIDEO_TMP_PATH, frames_per_video)
|
165 |
end_time = time.time()
|
166 |
st.info(f"{end_time - start_time} seconds")
|
167 |
st.dataframe(df)
|
168 |
st.video(VIDEO_TMP_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
capture_picture.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
img_file_buffer = st.camera_input("Take a picture")
|
6 |
+
|
7 |
+
if img_file_buffer is not None:
|
8 |
+
# To read image file buffer with OpenCV:
|
9 |
+
bytes_data = img_file_buffer.getvalue()
|
10 |
+
cv2_img: np.ndarray = cv2.imdecode(
|
11 |
+
np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR
|
12 |
+
)
|
13 |
+
|
14 |
+
# Check the type of cv2_img:
|
15 |
+
# Should output: <class 'numpy.ndarray'>
|
16 |
+
st.write(type(cv2_img))
|
17 |
+
|
18 |
+
# Check the shape of cv2_img:
|
19 |
+
# Should output shape: (height, width, channels)
|
20 |
+
st.write(cv2_img.shape)
|
camera.py → video.py
RENAMED
File without changes
|